Answer:
a. 3/4λ
d. 1/4λ
Explanation:
When the wavelength of the sound waves is λ and the two waves are having same frequency the waves are said to be out of phase if their phase difference is in the multiples of
or 180°.
When the two waves are out of phase then their opposite maxima coincide at the same time resulting in the minimum amplitude of the resulting wave throughout.
- As we observe from the schematic that the a wave has sinusoidal pattern of variation and we get a maxima after each
of the distance.
- Here we have two speakers out of phase therefore on shifting one of the speakers by the odd multiples of
we have the maxima or the extreme amplitudes.
So, we must place the microphone at 3/4λ and 1/4λ to pickup the loudest sound.
We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
Answer:
magnitude = 7.446 km, direction = 75.22° north of east
Explanation:
From the questions,
To get the the magnitude of the resultant vector we use Pythagoras theorem
a² = b²+c²
From the diagram,
y² = 1.9²+7.2²
y² = 55.45
y = √(55.45)
y = 7.446 km.
The direction of the dolphin is given as,
θ = tan⁻¹(7.2/1.9)
θ = tan⁻¹(3.7895)
θ = 75.22° north of east
Hence the magnitude of the resultant vector = 7.446 km, and it direction is 75.22° north of east
Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
All forces on the bullets cancel so that the net force on a bullet is zero, which means the bullet has zero acceleration and is in a state known as constant velocity. The bullet is moving at a constant value of velocity. Acceleration is the rate of velocity so having zero acceleration would mean that there is no change in velocity per unit of time.<span />