answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
1 year ago
5

Two horizontal rods are each held up by vertical strings tied to their ends. Rod 1 has length L and mass M; rod 2 has length 2L

and mass 2M. Each rod then has one of its supporting strings cut, causing the rod to begin pivoting about the end that is still tied up. Which rod has a larger initial angular acceleration?A Rod 1 B. Rod 2 C. The initial angular acceleration is the same for both.
Physics
1 answer:
antiseptic1488 [7]1 year ago
7 0

Answer:

Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.

Explanation:

For the rod 1 the angular acceleration is

\tau_1 = I_1\alpha _1 \\\\\alpha_1 = \dfrac{\tau_1}{I_1}

Similarly, for rod 2

\alpha_2 = \dfrac{\tau_2}{I_2}.

Now, the moment of inertia for rod 1 is

I_1 = \dfrac{1}{3}ML^2,

and the torque acting on it is (about the center of mass)

\tau_1 = Mg\dfrac{L}{2};

therefore, the angular acceleration of rod 1 is  

\alpha_1 = \dfrac{Mg\dfrac{L}{2}}{\dfrac{1}{3}ML^2},

\boxed{\alpha_1 = \dfrac{3g}{2L} }

Now, for rod 2 the moment of inertia is

I_2 = \dfrac{1}{3}(2M)(2L)^2

I_2 = \dfrac{8}{3} ML^2,

and the torque acting is (about the center of mass)

\tau _2 = (2M)g \dfrac{(2L)}{2}

\tau _2 = 2MgL;

therefore, the angular acceleration \alpha_2 is

\alpha_2 = \dfrac{2MgL;}{\dfrac{8}{3} ML^2,}.

\boxed{\alpha_2 = \dfrac{3g}{4L}}

We see here that

\dfrac{3g}{2L} > \dfrac{3g}{4L}

therefore

\boxed{\alpha_1 > \alpha_2.}

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.

You might be interested in
Determine the centripetal force upon a 40-kg child who makes 10 revolution around the cliffhanger in 29.3 seconds.the radius of
zysi [14]

Answer:

The centripetal force acting on the child is 39400.56 N.

Explanation:

Given:

Mass of the child is, m=40\ kg

Radius of the barrel is, R=2.90\ m

Number of revolutions are, n =10

Time taken for 10 revolutions is, t=29.3\ s

Therefore, the time period of the child is given as:

T=\frac{n}{t}=\frac{10}{29.3}=0.341\ s

Now, angular velocity is related to time period as:

\omega=\frac{2\pi}{T}=\frac{2\pi}{0.341}=18.43\ rad/s

Now, centripetal force acting on the child is given as:

F_{c}=m\omega^2 R\\F_{c}=40\times (18.43)^2\times 2.90\\F_{c}=40\times 339.66\times 2.90\\F_{c}=39400.56\ N

Therefore, the centripetal force acting on the child is 39400.56 N.

8 0
2 years ago
An ambulance driving 35.0 m/s emits a sound wave with a wavelength of 80.0 centimeters. As it drives away from a hospital, which
katen-ka-za [31]

Apparent frequency heard by the staff: 389 Hz

Explanation:

The phenomenon described in this situation is called Doppler effect.

Doppler effect occurs when there is a source emitting a wave in relative motion with respect an observer. In such situation, the frequency of the wave as perceived by the observer ("apparent frequency") is shifted from the real frequency of the sound ("proper frequency"). In particular:

- The observer perceives a higher frequency if the source is moving towards them

- The observer perceives a lower frequency if the source is moving away from them

The formula to calculate the apparent frequency in the Doppler effect is

f'=\frac{v\pm v_o}{v\pm v_s}f

where

f is the proper frequency

f' is the apparent frequency

v is the speed of the wave

v_o is the velocity of the observer (positive if they are moving towards the source, negative if moving away)

v_s is the velocity of the source (positive if it is moving away, negative if moving towards the observer)

First of all, in this problem we have to calculate the proper frequency of the sound wave emitted from the ambulance; we have:

v = 343 m/s (speed of sound wave)

\lambda=80 cm = 0.80 m (wavelength)

So the proper frequency is

f=\frac{v}{\lambda}=\frac{343}{0.80}=429 Hz

Now we can calculate the apparent frequency heard by the staff at the hospital when the ambulance moves away; we have:

v_s = +35.0 m/s (velocity of the ambulance)

v_o = 0 (velocity of the staff)

Substituting,

f'=\frac{343+0}{343+35}(429)=389 Hz

Learn more about frequency and wavelength:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

4 0
1 year ago
Jake has noticed his best friend Alison cheating at chess several times this week. If she gets caught, she will be kicked off th
tensa zangetsu [6.8K]
He should confront her about it and if after that point she continues report it to the chess team
8 0
2 years ago
Read 2 more answers
Match the words in the left-hand column to the appropriate blank in the sentences in the right-hand column. use each word only o
shepuryov [24]

Answer:

An annular Solar Eclipse

Explanation:

Solar eclipse is an event that occurs naturally on Earth when the moon in its orbit is positioned between the Earth and the Sun.Solar Eclipse can be total ,partial or annular.In the total solar eclipse, the moon completely covers the sun where as in the annular solar eclipse the moon covers the center of the Sun leaving outer edges of the Sun to be visible forming the<em> ring of fire.</em>In partial solar eclipse the Earth moves through the lunar penumbra as the moon moves between Earth and Sun.The moon blocks only some parts of the solar disk.Annular solar eclipse happens during new moon and the moon is at its farthest position from the Earth called Apogee.

7 0
2 years ago
Uzupełnij zdania właściwymi sformułowaniami. Wyobraź sobie, że między linę a siodełko karuzeli łańcuchowej wmontowany jest siłom
iragen [17]

Explanation:

Here's a clearer rendering of the question requirements;

Complete the sentences with the correct wording. Imagine that a force gauge is mounted between the rope and the chain carousel saddle. If you do not touch your feet to the ground when the vehicle is stationary, the dynamometer indicates A / B. When the carousel turns, you will read C / D on the dynamometer.

A. Your weight with the saddle

C. Rope strength value

B. Your weight

D. Centripetal force value

3 0
2 years ago
Other questions:
  • Caleb is swinging Rachel in a circle with a centripetal force of 533 N. If the radius of the circle is 0.75 m and Rachel has a m
    7·2 answers
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and th
    15·1 answer
  • A wind turbine works by slowing the air that passes its blades and converting much of the extracted kinetic energy to electric e
    13·1 answer
  • Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
    8·1 answer
  • A car needs to generate 75.0 hp in order to maintain a constant velocity of 18.2 m/s on a flat road. What is the magnitude of th
    13·1 answer
  • How to calculate area with force and pressure
    6·1 answer
  • Three cars (car F, car G, and car H) are moving with the same velocity when the driver suddenly slams on the brakes, locking the
    6·1 answer
  • Yamel is heating up leftover mashed potatoes from Thanksgiving. She forgot to put gravy on them. So she puts the cold gravy on t
    6·1 answer
  • When 999mm is added to 100m ______ is the result​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!