Answer:
-963.93 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The acceleration of Superman would be -963.93 m/s² from Lois' perspective
Answer:
0.456033049
Explanation:
where N=mg hence
where m is mass of object, g is acceleration due to gravity whose value is taken as
,
is the coefficient of static friction and F is the applied force.
Making
the subject we obtain
and substituting m for 38 Kg, g for
and 170 N for F we obtain

Therefore, the coefficient of static friction is 0.456033049
Answer:
The total mechanical energy does not change if the value of the mass is changed. That is, remain the same
Explanation:
The total mechanical energy of a spring-mass system is equal to the elastic potential energy where the object is at the amplitude of the motion. That is:
(1)
k: spring constant
A: amplitude of the motion = 2.0cm
As you can notice in the equation (1), the total mechanical energy of the system does not depend of the mass of the object. It only depends of the amplitude A and the spring constant.
Hence, if you use a mass of 0.40kg the total mechanical energy is the same as the obtained with a mas 0.20kg
Remain the same
The correct option is B.
Nuclear fission and fusion are two different types of nuclear reactions, through which energy may be obtained. Nuclear fission involves the splitting of a molecule into two different part in order to generate energy while nuclear fusion reaction involves the joining together of two elements in other to form one product. Nuclear fission generate much radioactive waste than nuclear fusion. The radioactive waste that is obtainable during nuclear fusion is less than 1% of that produce by nuclear fission.
Answer:
d ≈ 7,6 g/cm³
Explanation:
d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³
V = l³ = (1.74cm)³ ≈ 5,27 cm³