<span>The answer is mirrors. Mirrors are made by applying a metal thin layer on the back surface of a transparent substrat, typically glass. The metal layer in the antiquity was bronze, mercury and later silver whose luster gave the reflective property to the mirror.</span>
Answer:
upwards
Explanation:
Torque is the vector cross product of the force and radial distance.


The direction of the torque would be perpendicular to the direction of the force and radial distance. The direction of the force is counter-clockwise. The direction of the torque would be upwards.
To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N
Answer:
from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.
Explanation:
This can be explained on the basis of conservation of angular momentum.
This means the initial and the final angular velocity is conserved. Consider initial position (1)in the pike and final position in the be truck position. So there inertia's will also be different.
⇒

also,


since, 

therefore,

So, from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.
Answer:
Part(a): The angular acceleration is
.
Part(b): The angular displacement is
.
Explanation:
Part(a):
If
be the initial angular speed, final angular speed and angular acceleration of the centrifuge respectively, then from rotational kinematic equation, we can write

where '
' is the time taken by the centrifuge to increase its angular speed.
Given,
,
and
. From equation (
), the angular acceleration is given by

Part(b):
Also the angular displacement (
) can be written as
