answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
2 years ago
5

Calculate the force of Earth’s gravity on a spacecraft 2.00 Earth radii above the Earth’s surface (That would be 3.00 Earth radi

i from the center of Earth) if its mass is 1850 kg.
Express your answer to three significant figures and include the appropriate units.
Physics
1 answer:
igomit [66]2 years ago
3 0

Answer:

2014.44 N

Explanation:

mass of spacecraft, m = 1850 kg

distance r = 3 x R

where r be the radius of earth.

g be the acceleration due to gravity on the surface of earth and g' be the acceleration due to gravity at height

\frac{g'}{g}=\left (\frac{R}{r}  \right )^{2}

\frac{g'}{g}=\left (\frac{R}{3R}  \right )^{2}

g' = g / 9

g' = 9.8 / 9 = 1.089 m/s²

Force of gravity on the space craft

F = m g' = 1850 x 1.089

F = 2014.44 N

Thus, the force of gravity on the space craft at height is 2014.44 N.

You might be interested in
What is the first velocity of the car with four washers at
VARVARA [1.3K]

Answer:

0.28

0.56

Explanation:

5 0
2 years ago
Read 2 more answers
A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the
tankabanditka [31]

Answer

given,

F_L= 1.52\ N

\theta_L= 31^0

mass of book = 0.305 Kg

so, from the diagram attached  below

F_L cos {\theta_L} + F_b sin {\theta_b} = m g

1.52 times cos {31^0} + F_b sin {\theta_b} = 0.305 \times 9.8

F_b sin {\theta_b} = 2.989 -1.303

F_b sin {\theta_b} = 1.686

computing horizontal component

F_b cos {\theta_b} = F_L sin {\theta_L}

cos {\theta_b} = \dfrac{F_L sin {\theta_L}}{F_b}

cos {\theta_b} = \dfrac{1.52 \times sin {31^0}}{1.686}

cos {\theta_b} = 0.464

θ = 62.35°

5 0
2 years ago
For a long ideal solenoid having a circular cross-section, the magnetic field strength within the solenoid is given by the equat
andrezito [222]

Answer:

Radius of the solenoid is 0.93 meters.

Explanation:

It is given that,

The magnetic field strength within the solenoid is given by the equation,

B(t)=5t\ T, t is time in seconds

\dfrac{dB}{dt}=5\ T

The induced electric field outside the solenoid is 1.1 V/m at a distance of 2.0 m from the axis of the solenoid, x = 2 m

The electric field due to changing magnetic field is given by :

E(2\pi x)=\dfrac{d\phi}{dt}

x is the distance from the axis of the solenoid

E(2\pi x)=\pi r^2\dfrac{dB}{dt}, r is the radius of the solenoid

r^2=\dfrac{2xE}{(dE/dt)}

r^2=\dfrac{2\times 2\times 1.1}{(5)}

r = 0.93 meters

So, the radius of the solenoid is 0.93 meters. Hence, this is the required solution.

4 0
2 years ago
Read 2 more answers
A plane flying at 70.0 m/s suddenly stalls. If the acceleration during the stall is 9.8 m/s2 directly downward, the stall lasts
tino4ka555 [31]

Answer:

v = 66.4 m/s

Explanation:

As we know that plane is moving initially at speed of

v = 70 m/s

now we have

v_x = 70 cos25

v_x = 63.44 m/s

v_y = 70 sin25

v_y = 29.6 m/s

now in Y direction we can use kinematics

v_y = v_i + at

v_y = 29.6 - (9.81 \times 5)

v_y = -19.5 m/s

since there is no acceleration in x direction so here in x direction velocity remains the same

so we will have

v = \sqrt{v_x^2 + v_y^2}

v = \sqrt{63.44^2 + 19.5^2}

v = 66.4 m/s

4 0
2 years ago
A spring has a spring constant of 48 N/m. The end of the spring hangs 8 m above the ground. How much weight can be placed on the
Setler79 [48]
The answer is 96 N .....................................
7 0
2 years ago
Read 2 more answers
Other questions:
  • The mass of the Sun is 2 × 1030 kg, and the mass of Saturn is 5.68 × 1026 kg. The distance between Saturn and the Sun is 9.58 AU
    12·2 answers
  • Mark has diabetes and needs to undergo dialysis twice a week. Dialysis purifies the body by removing waste and excess water from
    12·2 answers
  • An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its
    12·1 answer
  • A ball of mass 5.0kg is lifted off the floor a distance of 1.7m. 1. What is the change in the gravitational potential energy of
    13·1 answer
  • A hiker walks due east for a distance of 25.5 km from her base camp. On the second day, she walks 41.0 km northwest till she dis
    7·1 answer
  • A molecular motor moves along a microtubule track in steps of 100 Å displacements. The motor hydrolyzes one molecule of ATP per
    6·1 answer
  • A solid cube of edge length r, a solid sphere of radius r, and a solid hemisphere of radius r, all made of the same material, ar
    9·1 answer
  • In a football game, running back is at the 10-yard line and running up the field towards the 50 yard
    5·1 answer
  • The mass of a fully loaded Boeing 747 is abput 4,082,331.33 kg. If it is cruising eastward at a velocity of 253 m/s, what is its
    15·1 answer
  • Suppose we have a radar dish that generates a strong signal that travels out to hit an asteroid 10^9 kilometres away.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!