answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetlanka [38]
2 years ago
13

The force F required to compress a spring a distance x is given by F 2 F0 5 kx where k is the spring constant and F0 is the prel

oad. Determine the work required to compress a spring whose spring constant is k 5 200 lbf/in a distance of one inch starting from its free length where F0 5 0 lbf. Express your answer in both lbf·ft and Btu.
Physics
1 answer:
IrinaVladis [17]2 years ago
6 0

Answer:

a)W=8.333lbf.ft

b)W=0.0107 Btu.

Explanation:

<u>Complete question</u>

The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.

Solution

Preload = F₀=0 lbf

Spring constant k= 200 lbf/in

Initial length of spring x₁=0

Final length of spring x₂= 1 in

At any point, the force during deflection of a spring is given by;

F= F₀× kx  where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

W=\int\limits^2_1 {} \, Fds \\\\\\W=\int\limits^2_1( {F_0+kx} \,) dx \\\\\\W=\int\limits^a_b {kx} \, dx ; F_0=0\\\\\\W=k\int\limits^2_1 {x} \, dx \\\\\\W=k*\frac{1}{2} (x_2^{2}-x_1^{2}  )\\\\\\W=200*\frac{1}{2} (1^2-0)\\\\\\W=100.lbf.in\\\\

Change to lbf.ft by dividing the value by 12 because 1ft=12 in

100/12 = 8.333 lbf.ft

work required to compress the spring, W=8.333lbf.ft

The work required to compress the spring in Btu will be;

1 Btu= 778 lbf.ft

?= 8.333 lbf.ft----------------cross multiply

(8.333*1)/ 778 =0.0107 Btu.

You might be interested in
(PLEASE HELP) Identify the following as electromagnetic (E) or mechanical (M) waves.
fomenos
Sound waves (m)

water waves (m)

radio waves (e)

ultraviolet (e)

waves in a wheat field (m)
3 0
2 years ago
Read 2 more answers
Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an a
serious [3.7K]

To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.

We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.

Our data is given as:

\omega = 1.25 rad/s \rightarrow The angular speed

\alpha = 0.745 rad/s2 \rightarrow The angular acceleration

r = 4.65 m \rightarrow The distance

The relation between the linear velocity and angular velocity is

v = r\omega

Where,

r = Radius

\omega = Angular velocity

At the same time we have that the centripetal acceleration is

a_c = \frac{v^2}{r}

a_c = \frac{(r\omega)^2}{r}

a_c = \frac{r^2\omega^2}{r}

a_c = r \omega^2

a_c = (4.65 )(1.25 rad/s)^2

a_c = 7.265625 m/s^2

Now the tangential acceleration is given as,

a_t = \alpha r

Here,

\alpha = Angular acceleration

r = Radius

\alpha = (0.745)(4.65)

\alpha = 3.46425 m/s^2

Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be

|a| = \sqrt{a_c^2+a_t^2}

|a| = \sqrt{(7.265625)^2+(3.46425)^2}

|a| = 8.049 m/s^2 \approx 8.05 m/s2

Therefore the correct answer is C.

7 0
2 years ago
11–8 Consider a heavy car submerged in water in a lake with a flat bottom. The driver’s side door of the car is 1.1 m high and 0
Greeley [361]

Answer:

Explanation:

position of centre of mass of door from surface of water

= 10 + 1.1 / 2

= 10.55 m

Pressure on centre of mass

atmospheric pressure + pressure due to water column

10 ⁵ + hdg

= 10⁵ + 10.55 x 1000 x 9.8

= 2.0339 x 10⁵ Pa

the net force acting on the door (normal to its surface)

= pressure at the centre x area of the door

= .9 x 1.1 x 2.0339 x 10⁵

= 2.01356 x 10⁵ N

pressure centre will be at 10.55 m below the surface.

When the car is filled with air or  it is filled with water , in both the cases pressure centre will lie at the centre of the car .

7 0
2 years ago
Q 10.17: Which of the following statements concerning simple harmonic motion is false? A : A restoring force acts on an object i
Alenkasestr [34]

Answer:

A : A restoring force acts on an object in simple harmonic motion that is directed in the same direction as the object's displacement.

Explanation:

Statement A is the false one:

A : A restoring force acts on an object in simple harmonic motion that is directed in the same direction as the object's displacement. --> FALSE. The restoring force in the simple harmonic motion is given by

F=-kx

where

k is the spring constant

x is the displacement of the system, measured with respect to the equilibrium position

As we can notice from the equation, there is a negative sign in front of (kx): this means that the force, F, and the displacement, x, have opposite directions. In fact, the restoring force of a simple harmonic oscillator always acts to restore the equilibrium position, therefore it acts in the opposite direction as that of the displacement.

7 0
2 years ago
"Filip, a finance executive, loves playing with numbers and hates sports. His manager, Daphne, asks him to represent their compa
avanturin [10]

Answer: Extrinsic motivation

Explanation:

This is an external motivation such as reward, desire to impress someone, prestige, etc which drives someone towards achieving a goal.

3 0
2 years ago
Read 2 more answers
Other questions:
  • A roller coaster, traveling with an initial speed of 15 meters per second, decelerates uniformly at â7.0 meters per second2 to a
    11·1 answer
  • A solution is oversaturated with solute. Which could be done to decrease the oversaturation?
    13·2 answers
  • An air-filled 20-μf capacitor has a charge of 60 μc on its plates. how much energy is stored in this capacitor?
    8·1 answer
  • 23. While sliding a couch across a floor, Andrea and Jennifer exert forces F → A and F → J on the couch. Andrea’s force is due n
    6·1 answer
  • An electric pump rated 1.5 KW lifts 200kg of water through a vertical height of 6m in 10 secs: way is the efficiency of the pump
    13·1 answer
  • The box leaves position x=0 with speed v0. The box is slowed by a constant frictional force until it comes to rest at position x
    12·1 answer
  • If the newton is the product of kilograms and meters/second2 what units comprise the pound?
    8·1 answer
  • answers Collision derivation problem. If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the in
    11·1 answer
  • A 2-column table with 4 rows. The first column labeled substance has entries calcium chloride, calcium bromide, calcium carbonat
    12·2 answers
  • series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!