The Coulomb force is equal to the constant k times the product of charge one and charge two over radius.
F=k((q1q2)/r)
Answer:
The height of the wave is determined by the wind strength and fetch.
Explanation:
The height of the wave is determined by the wind strength and fetch.
The more the strength and the more the fetch size the more will be the height of the wave.
Remember as the wave approaches the coast its wavelength decreases and the wave height increases, whereas when the wave goes away from the coast its wavelength increases and height decreases.
Momentum is conserved.
p = m₁v₁ + m₂v₂ = constant
Momentum before the collision(kick):
p = 80 * 0 + 4 * 0 = 0
Momentum after the collision:
p = 80 * v₁ + 4 * 15 = 0
Solve for v₁.
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
Answer:
The magnitude of the rate of change of the child's momentum is 794.11 N.
Explanation:
Given that,
Mass of child = 27 kg
Speed of child in horizontal = 10 m/s
Length = 3.40 m
There is a rate of change of the perpendicular component of momentum.
Centripetal force acts always towards the center.
We need to calculate the magnitude of the rate of change of the child's momentum
Using formula of momentum


Put the value into the formula


Hence, The magnitude of the rate of change of the child's momentum is 794.11 N.