Answer:
A = -0.576 μC
B = 4.256 μC
Explanation:
Suppose a single electron charge is
. Then the total charge that is flowing from B to A is:

Let A and B be the initial charge of spheres A and B, respectively. Since the net charge is 3.68μC we have the following equation
(1)
When they touch 2.416μC flows from B to A, then they are equal, so we have the following equation

(2)
Add equation (1) to equation (2) we have



Answer:
Explanation:
When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.
When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other .So both the shells lose their charges .The positive half shell also loses all its charges
When we separate the half shells , there will be no deflection in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.
Answer:
Explanation:
Animal 1 because it takes 3s to go 25 meters 3.5s to go 50 meters and 5s to go 75 meters while the others take longer.
Answer:
1.77 x 10^-8 C
Explanation:
Let the surface charge density of each of the plate is σ.
A = 4 x 4 = 16 cm^2 = 16 x 10^-4 m^2
d = 2 mm
E = 2.5 x 10^6 N/C
ε0 = 8.85 × 10-12 C2/N ∙ m2
Electric filed between the plates (two oppositively charged)
E = σ / ε0
σ = ε0 x E
σ = 8.85 x 10^-12 x 2.5 x 10^6 = 22.125 x 10^-6 C/m^2
The surface charge density of each plate is ± σ / 2
So, the surface charge density on each = ± 22.125 x 10^-6 / 2
= ± 11.0625 x 10^-6 C/m^2
Charge on each plate = Surface charge density on each plate x area of each plate
Charge on each plate = ± 11.0625 x 10^-6 x 16 x 10^-4 = ± 1.77 x 10^-8 C
Answer:
Hello there Dude answer is B :D hope it helped mark me brainliest.