I think thats a trick question on the periodic table there is no Z, theres Zi which is zinc but no Z
When resistors are connected in series, they act like
a single resistor whose resistance is their sum.
100 ohms and 400 ohms, connected in series, look like
a single resistor of 500 ohms.
Current = (voltage) / (resistance)
= (60 volts) / (500 ohms) = 0.12 A.
________________________
<span>
Current is measured by connecting a meter in series
with an energized component. In other words, a break
is made in the circuit, the meter is connected in the break,
and the current to be measured literally flows through the meter.</span>
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
Answer:
The wife have to sit at 0.46 L from the middle point of the seesaw.
Explanation:
We need to make a sketch of the seesaw and the loads acting over it.
And by the studying of the Newton's law we can find the equation useful to find the distance of the mother sitting on the seesaw with respect to the center ot the pivot point.
A logical intuition will give us the idea that the mother will be on the side of her son to make the balance.
The maximum momentum with respect to the pivot point (0) will be:

Where L/2 is the half of the distance of the seesaw
Therefore the other loads ( mom + son) must be create a momentum equal to the maximum momentum.
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>