answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ipn [44]
2 years ago
8

Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an a

ngular acceleration of 0.745 rad/s2. The child is standing 4.65 m from the center of the merry-go-round. What is the magnitude of the linear acceleration of the child? Angular and Linear Quantities: A child is riding a merry-go-round that has an instantaneous angular speed of 1.25 rad/s and an angular acceleration of 0.745 rad/s2. The child is standing 4.65 m from the center of the merry-go-round. What is the magnitude of the linear acceleration of the child?
a. 3.46 m/s2

b.4.10 m/s2

c. 8.05 m/s2

d. 7.27 m/s2

e. 2.58 m/s2
Physics
1 answer:
serious [3.7K]2 years ago
7 0

To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.

We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.

Our data is given as:

\omega = 1.25 rad/s \rightarrow The angular speed

\alpha = 0.745 rad/s2 \rightarrow The angular acceleration

r = 4.65 m \rightarrow The distance

The relation between the linear velocity and angular velocity is

v = r\omega

Where,

r = Radius

\omega = Angular velocity

At the same time we have that the centripetal acceleration is

a_c = \frac{v^2}{r}

a_c = \frac{(r\omega)^2}{r}

a_c = \frac{r^2\omega^2}{r}

a_c = r \omega^2

a_c = (4.65 )(1.25 rad/s)^2

a_c = 7.265625 m/s^2

Now the tangential acceleration is given as,

a_t = \alpha r

Here,

\alpha = Angular acceleration

r = Radius

\alpha = (0.745)(4.65)

\alpha = 3.46425 m/s^2

Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be

|a| = \sqrt{a_c^2+a_t^2}

|a| = \sqrt{(7.265625)^2+(3.46425)^2}

|a| = 8.049 m/s^2 \approx 8.05 m/s2

Therefore the correct answer is C.

You might be interested in
When explaining chemical reactions to a friend, Brianna models a reaction by taking several colors of modeling clay and making a
Drupady [299]

Answer: synthesis

Explanation:

5 0
2 years ago
Read 2 more answers
A bag of potato chips contains 2.00 L of air when it is sealed at sea level at a pressure of 1.00 atm and a temperature of 20.0°
Genrish500 [490]

Answer:

The volume at mountains is 2.766 L.

Explanation:

Given that,

Volume V_{1} = 2.00\ L

Pressure P_{1}= 1.00\ atm

Pressure P_{2}= 70.0\ kPa

Temperature T_{1}= 20.0°C = 293\ K

Temperature T_{2}= 7.00°C = 280\ K

We need to calculate the volume at mountains

Using  gas law

\dfrac{PV}{T}=\ Constant

For both temperature,

\dfrac{P_{1}V_{1}}{T_{1}}=\dfrac{P_{2}V_{2}}{T_{2}}

Put the value into the formula

\dfrac{101.325\times2}{293}=\dfrac{70\times V_{2}}{280}

V_{2}=\dfrac{101.325\times2\times280}{293\times70}

V_{2}=2.766\ litre

Hence, The volume at mountains is 2.766 L.

5 0
2 years ago
Two students walk in the same direction along a straight path, at a constant speed one at 0.90 m/s and the other at 1.90 m/s. a.
creativ13 [48]

Answer: a) 456.66 s ; b) 564.3 m

Explanation: The time spend to cover any distance a constant velocity is given by:

v= distance/time so t=distance/v

The slower student time is: t=780m/0.9 m/s= 866.66 s

For the faster students t=780 m/1,9 m/s= 410.52 s

Therefore the time difference is 866.66-410.52= 456.14 s

In order to calculate the distance that faster student should  walk

to arrive 5,5 m before that slower student, we consider the follow expressions:

distance =vslower*time1

distance= vfaster*time 2

The time difference is 5.5 m that is equal to 330 s

replacing in the above expression we have

time 1= 627 s

time2 = 297 s

The distance traveled is 564,3 m

8 0
2 years ago
A rock is dropped from the top of a tall building. The rock's displacement in the last second before it hits the ground is 46 %
olasank [31]

Answer:

height is 69.68 m

Explanation:

given data

before it hits the ground =  46 % of entire distance

to find out

the height

solution

we know here acceleration and displacement that is

d = (0.5)gt²     ..............1

here d is distance and g is  acceleration and t is time

so when object falling it will be

h = 4.9 t²   ....................2

and in 1st part of question

we have (100% - 46% ) = 54 %

so falling objects will be there

0.54 h = 4.9 (t-1)²       ...................3

so

now we have 2 equation with unknown

we equate both equation

1st equation already solve for h

substitute h in the second equation and find t

0.54 × 4.9 t² = 4.9 (t-1)²  

t = 0.576 s and  3.771 s

we use here 3.771 s because  0.576 s is useless displacement in the last second before it hits the ground is 46 % of the entire distance it falls

so take t = 3.771 s

then h from equation 2

h = 4.9 t²

h = 4.9 (3.771)²

h =  69.68 m

so height is 69.68 m

6 0
2 years ago
A cylinder of radius R and height H is floating upright in
emmainna [20.7K]

Answer:

Pressure difference between Top and Bottom of the cylinder is given as

\Delta P = \frac{gH}{2}(\rho_A + \rho_B)

Explanation:

As we know that the force due to pressure is balanced by the weight of the cylinder

So we will have

F = mg

so we have

\Delta P \pi R^2 = mg

so we have

\Delta P \pi R^2 = \pi R^2(\rho_A(\frac{H}{2}) + \rho_B(\frac{H}{2}))g

so we have

\Delta P = \frac{gH}{2}(\rho_A + \rho_B)

6 0
2 years ago
Other questions:
  • What is the risk when a pwc passes too closely behind another boat?
    12·1 answer
  • Explain why the extrapolated temperature is used to determine the maximun temperature of the mixture rather than the highest rec
    10·2 answers
  • A worker wants to turn over a uniform 1110-N rectangular crate by pulling at 53.0 ∘ on one of its vertical sides (the figure (Fi
    7·1 answer
  • If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?
    14·2 answers
  • Joel uses a claw hammer to remove a nail from a wall. He applies a force of 40 newtons on the hammer. The hammer applies a force
    5·2 answers
  • Calculate the linear momentum per photon,energy per photon, and the energy per mole of photons for radiation of wavelength; (a)
    11·1 answer
  • Certain meteorites have been examined and found to carry samples of which molecules?
    14·1 answer
  • You set a tuning fork into vibration at a frequency of 723 Hz and then drop it off the roof of the Physics building where the ac
    5·1 answer
  • Two small balls, A and B, attract each other gravitationally with a force of magnitude F. If we now double both masses and the s
    8·1 answer
  • A student practicing for a cross country meet runs 250 m in 30 s. What is the average speed
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!