answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
2 years ago
14

If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?

Record to the ones place.
______cm3
Determine the initial volume of water in the graduated cylinder. If you added the black marble to the graduated cylinder and it sinks, what final volume should the water level indicate? Record to the ones place.
______ML

Physics
2 answers:
Mkey [24]2 years ago
7 0

1. Answer: 14.137{cm}^{3}


Assuming the marble has an spherical shape, its volume can be calculated by the following formula:


V_{sphere}=\frac{4}{3}\pi{r}^{3}     (1)


where r is the radius of the sphere and also is the half of its diameter d:


r=\frac{d}{2}     (2)


Now, if we know the diameter of the black marble is 3cm, its radius is:


r=\frac{3}{2}cm     (3)


Substituting this value on equation (1):


V_{sphere}=\frac{4}{3}\pi{(\frac{3}{2}cm)}^{3}


Simplifying:

V_{sphere}=\frac{9}{2}\pi{cm}^{3}


V_{sphere}=14.137{cm}^{3}>>>>>This is an approximation of the volume of the marble


Note that 1{cm}^{3}=1ml, therefore the result above can be also written as 14.137ml


2. Answer: 64.137 ml


According to the Archimedes’ Principle a body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.


In this case, if we have a graduated cylinder with the capacity to contain 100 ml of water, and we fill it with 50 ml of water (as shown in the image attached) and then we add the black marble until it sinks; the water level will increase according to the principle explained above.

As the marble does not absorb water, the space it occupies displaces the water upwards and, in this way, it is possible to determine its volume or the final volume the water level indicates in the cylinder.


We already know the initial volume of water V_i in the graduated cylinder, which is 50 ml, and we know the volume of the marble V_m because we calculated it above. If we want to know the final volume of water level V_f we have to use the following relation:


V_{f}-V_{i}=V_{m}     (4)


and find V_f:


V_{f}=V_{i}+V_{m}     (5)


V_{f}=50ml+14,137ml    


Finally:

V_{f}=64,137ml>>>>>This is the final volume of the water level indicated in the graduated cylinder




Luden [163]2 years ago
7 0

the answer is 14cm

and 124mL

You might be interested in
An organ pipe is tuned to exactly 384 Hz when the temperature in the room is 20°C. Later, when the air has warmed up to 25°C, th
maksim [4K]

Answer: A. Greater than 384 Hz

Explanation:

The velocity of sound is directly related to the temperature rather it is directly proportional meaning if the temperature decreases the velocity decreases and if temperature increases the velocity increases.

Now, we are given that temperature has risen from 20°C to 25°C meaning it has increases. So it implies that velocity must also increase.

Also, the velocity for organ pipe is directly proportional to its frequency. Now if velocity increases frequency must also increase. In this case, the original frequency is 384 Hz. Now increasing the temperature resulted in increase in velocity and thus increase in frequency.

So option a is correct. i.e. now frequency will be greater than 384 Hz.

3 0
2 years ago
An object is projected with initial speed v0 from the edge of the roof of a building that has height H. The initial velocity of
Vsevolod [243]

Answer:

Explanation:

Initial velocity u = V₀ in upward direction so it will be negative

u = - V₀

Displacement s = H . It is downwards so it will be positive

Acceleration = g ( positive as it is also downwards )

Using the formula

v² = u² + 2 g s

v² = (- V₀ )² + 2 g H

= V₀² + 2 g H .

v = √ ( V₀² + 2 g H )

6 0
2 years ago
Calculate the volume of 19 kilograms of petrol if the density of petrol is 800 kg/m?​
earnstyle [38]

Answer:

i hope this will help you :)

Explanation:

mass=19kg

density=800kg/m³

volume=?

as we know that

density=mass/volume

density×volume=mass

volume=mass/density

putting the values

volume=19kg/800kg/m³

so volume=0.02375≈0.02m³

6 0
2 years ago
a 1.2x10^3 kilogram car is accelerated uniformly from 10. meters per second to 20 meters per second in 5.0 seconds. what is the
irinina [24]
Force , F = ma

F =  m(v - u)/t               

Where m = mass in kg, v= final velocity in m/s, u = initial velocity in m/s
t = time, Force is in Newton.

m= 1.2*10³ kg,  u = 10 m/s,  v = 20 m/s, t = 5s

F =  1.2*10³(20 - 10)/5

F = 2.4*10³ N = 2400 N


7 0
2 years ago
Water is formed when two hydrogen atoms bond to an oxygen atom. The hydrogen and the oxygen in this example are different A) com
Alik [6]
C. Elements
elements are found in periodic table (in 1 box)
5 0
2 years ago
Read 2 more answers
Other questions:
  • Hydrogen-3 has a half-life of 12.35 years. What mass of hydrogen-3 will remain form a 100.0 MG initial sample after 5.0 years? A
    11·1 answer
  • When a car goes around a circular curve on a horizontal road at constant speed, what force causes it to follow the circular path
    7·1 answer
  • What is the maximum negative displacement a dog could have if it started its motion at +3 m?
    9·1 answer
  • If you pair copper which has an electron affinity of 0.34 and silver which has an electron affinity of 0.80, will you make a str
    15·1 answer
  • Imagine a small child whose legs are half as long as her parent’s legs. If her parent can walk at maximum speed V, at what maxim
    15·1 answer
  • . A magnetic field has a magnitude of 0.078 T and is uniform over a circular surface whose radius is 0.10 m. The field is orient
    15·1 answer
  • An astronaut on a space walk floats a little too far away
    5·2 answers
  • Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
    10·1 answer
  • Part A At t tt = 2.0 s s , what is the particle's position? Express your answer to two significant figures and include the appro
    15·1 answer
  • Suppose that we use a heater to boil liquid nitrogen (N2 molecules). 4480 J of heat turns 20 g of liquid nitrogen into gas. Note
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!