answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhenek [66]
2 years ago
14

If the diameter of the black marble is 3.0 cm, and by using the formula for volume, what is a good approximation of its volume?

Record to the ones place.
______cm3
Determine the initial volume of water in the graduated cylinder. If you added the black marble to the graduated cylinder and it sinks, what final volume should the water level indicate? Record to the ones place.
______ML

Physics
2 answers:
Mkey [24]2 years ago
7 0

1. Answer: 14.137{cm}^{3}


Assuming the marble has an spherical shape, its volume can be calculated by the following formula:


V_{sphere}=\frac{4}{3}\pi{r}^{3}     (1)


where r is the radius of the sphere and also is the half of its diameter d:


r=\frac{d}{2}     (2)


Now, if we know the diameter of the black marble is 3cm, its radius is:


r=\frac{3}{2}cm     (3)


Substituting this value on equation (1):


V_{sphere}=\frac{4}{3}\pi{(\frac{3}{2}cm)}^{3}


Simplifying:

V_{sphere}=\frac{9}{2}\pi{cm}^{3}


V_{sphere}=14.137{cm}^{3}>>>>>This is an approximation of the volume of the marble


Note that 1{cm}^{3}=1ml, therefore the result above can be also written as 14.137ml


2. Answer: 64.137 ml


According to the Archimedes’ Principle a body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.


In this case, if we have a graduated cylinder with the capacity to contain 100 ml of water, and we fill it with 50 ml of water (as shown in the image attached) and then we add the black marble until it sinks; the water level will increase according to the principle explained above.

As the marble does not absorb water, the space it occupies displaces the water upwards and, in this way, it is possible to determine its volume or the final volume the water level indicates in the cylinder.


We already know the initial volume of water V_i in the graduated cylinder, which is 50 ml, and we know the volume of the marble V_m because we calculated it above. If we want to know the final volume of water level V_f we have to use the following relation:


V_{f}-V_{i}=V_{m}     (4)


and find V_f:


V_{f}=V_{i}+V_{m}     (5)


V_{f}=50ml+14,137ml    


Finally:

V_{f}=64,137ml>>>>>This is the final volume of the water level indicated in the graduated cylinder




Luden [163]2 years ago
7 0

the answer is 14cm

and 124mL

You might be interested in
If you found yourself on the see-through side of this one-way mirror what is the best way you could prevent someone on the other
Taya2010 [7]

Answer:

If there is any sheets or padded material in this room you can cover the window, you could turn off all the lights if there is a light switch in the room,   you could try to bring a bright flashlight in and shine it into the other room(try to annoy the person watching you so they leave), act really boring and hopefully make the other person lose interest.

Explanation:

(hint) If you actually get in a situation like this place your fingernail against the mirror or glass you think could possibly be a one-way mirror. If there's a gap between your nail and the mirror, it's most likely a genuine mirror :)

7 0
1 year ago
A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp
Ahat [919]

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

5 0
1 year ago
Read 2 more answers
Susan and Hannah are each riding a swing. Susan has a mass of 25 kilograms, and Hannah has a mass of 30 kilograms. Susan’s swing
Charra [1.4K]

Answer:

Kinetic energy is given by:

K.E. = 0.5 m v²

Susan has mass, m = 25 kg

Velocity with which Susan moves is, v = 10 m/s

Hannah has mass, m' = 30 kg

Velocity with which Hannah moves is, v' = 8.5 m/s

<u>Kinetic energy of Susan:</u>

0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J

<u>Kinetic energy of Hannah:</u>

0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J

Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.

Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.

4 0
2 years ago
A wagon full of manure accidentally rolls down a driveway for 5.0m while a person pushes against the wagon with a force of 420 N
Cerrena [4.2K]

Answer:

2100 J

Explanation:

Parameters given:

Force acting on the object, F = 420 N

Distance moved by object, d = 5m

The change in kinetic energy of an object is equal to the work done by a force acting on the object:

W = F * d

∆KE = F * d

∆KE = 420 * 5

∆KE = 2100 J

8 0
1 year ago
Read 2 more answers
A uniform 1.4-kg rod that is 0.75 m long is suspended at rest from the ceiling by two springs, one at each end of the rod. Both
svetlana [45]

Answer:

7 deg

Explanation:

m = mass of the rod = 1.4 kg

W = weight of the rod = mg = (1.4) (9.8) = 13.72 N

k_{L} = spring constant for left spring = 59 Nm^{-1}

k_{R} = spring constant for right spring = 33 Nm^{-1}

x_{L} = stretch in the left spring

x_{R} = stretch in the right spring

L = length of the rod = 0.75 m

\theta = Angle the rod makes with the horizontal

Using equilibrium of force in vertical direction for left spring

k_{L} x_{L} = (0.5) W\\(59) x_{L} = (0.5) (13.72)\\x_{L} = 0.116 m

Using equilibrium of force in vertical direction for right spring

k_{R} x_{R} = (0.5) W\\(33) x_{R} = (0.5) (13.72)\\x_{R} = 0.208 m

Angle made with the horizontal is given as

\theta = tan^{-1}(\frac{(x_{R} - x_{L})}{L} )\\\theta = tan^{-1}(\frac{(0.208 - 0.116)}{0.75} )\\\theta = 7 deg

3 0
2 years ago
Other questions:
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • What is the total kinetic energy of a 0.15 kg hockey puck sliding at 0.5 m/s and rotating about its center at 8.4 rad/s? The dia
    8·1 answer
  • Falling raindrops frequently develop electric charges. Does this create noticeable forces between the droplets? Suppose two 1.8
    5·2 answers
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
    10·1 answer
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • The food calorie, equal to 4186J , is a measure of how much energy is released when food is metabolized by the body. A certain b
    12·1 answer
  • Force F1 acts on a particle and does work W1. Force F2 acts simultaneously on the particle and does work W2. The speed of the pa
    9·1 answer
  • Describe how electromagnetic radiation can ionise an atom. 2 marks
    14·1 answer
  • A satellite that orbits Earth with a speed of v0 must be in an orbit of radius 8RE to maintain a circular orbit, where RE is the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!