consider the right direction as positive and left direction as negative.
M = mass of the ball = 5 kg
m = mass of stone = 1.50 kg
= initial velocity of the ball before collision = 0 m/s
= initial velocity of the stone before collision = 12 m/s
= final velocity of the ball after collision = ?
= final velocity of the stone after collision = - 8.50 m/s
using conservation of momentum
M
+ m
= M
+ m
(5) (0) + (1.5) (12) = 5
+ (1.50) (- 8.50)
= 6.15 m/s
h = height gained by the ball
using conservation of energy
Potential energy gained by ball at Top = kinetic energy at the bottom
Mgh = (0.5) M
(9.8) h = (0.5) (6.15)²
h = 1.93 m
It depends on where you live when you're not visiting Chicago. We need to know the distance of the trip.
Your average speed on the trip is . . .
(total distance in miles) / (3 hours)
miles per hour
Answer :
The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.
Explanation:
Given,
Atomic mass of silver = 107.87 g/mol
Density of silver = 10.35 g/cm^3
Converting to g/m^3,
= 10.35 g/cm^3 × 10^6cm^3/m^3
= 10.35 × 10^6 g/m^3
Avogadro's number = 6.022 × 10^23 atoms/mol
Fraction of lattice sites that are vacant in silver = 1 × 10^-6
Nag = (Na * Da)/Aag
Where,
Nag = Total number of lattice sites in Ag
Na = Avogadro's number
Da = Density of silver
Aag = Atomic weight of silver
= (6.022 × 10^23 × (10.35 × 10^6)/107.87
= 5.778 × 10^28 atoms/m^3
The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6
= 5.778 × 10^22/m^3.
Answer:
T = 0.03 Nm.
Explanation:
d = 1.5 in = 0.04 m
r = d/2 = 0.02 m
P = 56 kips = 56 x 6.89 = 386.11 MPa
σ = 42-ksi = 42 x 6.89 = 289.58 MPa
Torque = T =?
<u>Solution:</u>
σ = (P x r) / T
T = (P x r) / σ
T = (386.11 x 0.02) / 289.58
T = 0.03 Nm.
We have that The ratio U1/U2 of their potential energies due to their interactions with Q is
From the question we are told that
Question 1
Charge q1 is distance r from a positive point charge Q.
Question 2
Charge q2=q1/3 is distance 2r from Q.
Charge q1 is distance s from the negative plate of a parallel-plate capacitor.
Charge q2=q1/3 is distance 2s from the negative plate.
Generally the equation for the potential energy is mathematically given as

Therefore
The Equations of U1 and U2 is
For U1

For U2

Since
U is a function of q and q2=q1/3
Therefore

For Question 2
For U1

Therefore

For more information on this visit
brainly.com/question/23379286?referrer=searchResults