Answer:
We need to multiply 12 to each term to eliminate fractions.
Explanation:
Given expression:

To eliminate the fraction we need to multiply each term by least common multiple of the denominators of the fraction.
The denominators in the above expressions are:
4, 3 and 2
The multiples of each can be listed below.
2⇒ 2,4,6,8,10,<u>12</u>,14,16.....
3⇒ 3,6,9,<u>12</u>,15,18
4⇒ 4,8,<u>12</u>.......
From the list of the multiples stated, we can see the least common multiple is 12.
So we will multiply each term by 12.
Multiplying 12 to both sides.

Using distribution,

Thus we successfully eliminated the fractions.
Answer:
Minimum capacitance = 200 μF
Explanation:
From image B attached, we can calculate the current flowing through the capacitors.
Thus;
Since V=IR; I = V/R = 5/500 = 0.01 A
Maximum charge in voltage is from 5V to 4.9V. Thus, each capacitor will have 2.5V. Hence, change in voltage(Δv) for each capacitor will be ; Δv = 0.05 V
So minimum capacitance will be determined from;
i(t) = C(dv/dt)
So, C = i(t)(Δt/Δv) = 0.01[0.001/0.05]
C = 0.01 x 0.0002 = 200 x 10^(-6) F = 200 μF
<h2>
Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3.67 x 10⁹ L</h2>
Explanation:
The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3,666,500 m³.
Volume = 3,666,500 m³
1 m³ = 1000 L
So volume = 3,666,500 x 1000 = 3666500000 L
Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3666500000 L
Volume of vehicle Assembly Building at the Kennedy Space Center in Florida = 3.67 x 10⁹ L
The sound is increased because sound waves are in fact mech. waves which means the that they can't travel through empty space and thus need a medium to travel through
Answer:
We can conclude that there is a decrease in kinetic energy of the particles due to their elastic collision, since kinetic energy is directly proportional to squared velocity of the particles.
Explanation:
Given:
initial velocity of particle A, Ua = 5m/s
initial velocity of particle B, Ub = 10 m/s
final velocity of particle A, Va = 4m/s
final velocity of particle B, Vb = 7m/s
For particle A:
The final velocity is 1 less than the initial velocity.
For particle B:
The final velocity is 3 less than the initial velocity.
We can conclude that there is a loss in kinetic energy due to elastic collision of the two particles, since kinetic energy is directly proportional to squared velocity of the particles. A decrease in velocity means decrease in kinetic energy.