The average speed can be easily calculated by taking the
ratio of distance and time. That is:
average speed = distance / time
so calculating:
average speed = 4875 ft / 6.85 minutes
<span>average speed = 711.68 ft / min</span>
Answer:

Explanation:
If
-
,
are temperatures of gasses and liquid in Kelvins,
and
are thicknesses of gas layer and steel slab in meters,
,
are convection coefficients gas and liquid in
,
is the contact resistance in
,
- and
are thermal conductivities of gas and steel in
,
then: part(a):

using known values:
part(b): Using the rate equation :
the surface temperature 
and 
Similarly


The temperature distribution is shown in the attached image
Time taken by the water balloon to reach the bottom will be given as

here we know that


now by the above formula



now in the same time interval we can say the distance moved by it will be


so it will fall at a distance 15.7 m from its initial position
Answer:
a = 6.53 m/s^2
v = 11.5689 m/s
Explanation:
Given data:
engine power is 217 hp
70 % power reached to wheel
total mass ( car + driver) is 1530 kg
from the data given
2/3 rd of weight is over the wheel
w = 2/3rd mg
maximum force

we know that F = ma


the new power is 


solving for speed v

![v = 0.7 \frac{217 [\frac{746 w}{1 hp}]}{1500 \times 6.53}](https://tex.z-dn.net/?f=v%20%3D%200.7%20%5Cfrac%7B217%20%5B%5Cfrac%7B746%20w%7D%7B1%20hp%7D%5D%7D%7B1500%20%5Ctimes%206.53%7D)
v = 11.5689 m/s
Explanation:
It is given that, the volume of air is 53.28 m³. We need to convert it into scientific notation.
Any number in scientific notation can be given by :

a is real no and b is any integer
We have, V = 53.28 m³
To write it into scientific notation, shift decimal before 3 such that,

No multiply and divide by 10. So,

So, the correct option is (a).