Answer;
B. Increased levels of carbon dioxide, a greenhouse gas, leads to increased phytoplankton growth.
Explanation;
-A combination of warm water, high nutrient levels, and adequate sunlight may cause a harmful algae bloom. These blooms may damage aquatic ecosystems by blocking sunlight and depleting oxygen that other organisms need to survive.
-Algae blooms have been increasing globally, and climate change may be playing a role in the increment. For instance, during the warm summer season or when water is warmer, some harmful types of algae to grow faster than other, more benign varieties.
-Additionally, the warmer surface water also prevents water from mixing vertically, allowing algae to grow thicker and faster.
A, the light generated from the headlights travels at a fixed speed relative to the road
Hello!
The independent variable is the variable deliberately changed.
The dependent variable is the variable that responds to change. So the answer is A.
Hope this helps. Any questions please just ask! Thank you!
Answer:
230
Explanation:
= Rotational speed = 3600 rad/s
I = Moment of inertia = 6 kgm²
m = Mass of flywheel = 1500 kg
v = Velocity = 15 m/s
The kinetic energy of flywheel is given by

Energy used in one acceleration

Number of accelerations would be given by

So the number of complete accelerations is 230
Apply conservation of angular momentum:
L = Iw = const.
L = angular momentum, I = moment of inertia, w = angular velocity, L must stay constant.
L must stay the same before and after the professor brings the dumbbells closer to himself.
His initial angular velocity is 2π radians divided by 2.0 seconds, or π rad/s. His initial moment of inertia is 3.0kg•m^2
His final moment of inertia is 2.2kg•m^2.
Calculate the initial angular velocity:
L = 3.0π
Final angular velocity:
L = 2.2w
Set the initial and final angular momentum equal to each other and solve for the final angular velocity w:
3.0π = 2.2w
w = 1.4π rad/s
The rotational energy is given by:
KE = 0.5Iw^2
Initial rotational energy:
KE = 0.5(3.0)(π)^2 = 14.8J
Final rotational energy:
KE = 0.5(2.2)(1.4)^2 = 21.3J
There is an increase in rotational energy. Where did this energy come from? It came from changing the moment of inertia. The professor had to exert a radially inward force to pull in the dumbbells, doing work that increases his rotational energy.