answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
2 years ago
14

How does climate change lead to an increase in algal blooms? a. Decreased temperatures lead to an increase in phytoplankton grow

th. b. Increased levels of carbon dioxide, a greenhouse gas, leads to increased phytoplankton growth. c. Increased pollution leads to lower levels of nutrients in aquatic ecosystems and therefore an increase in phytoplankton growth. d. Decreased water levels caused by climate change lead to an increase in phytoplankton growth.
Physics
2 answers:
asambeis [7]2 years ago
4 0

Answer;

B. Increased levels of carbon dioxide, a greenhouse gas, leads to increased phytoplankton growth.

Explanation;

-A combination of warm water, high nutrient levels, and adequate sunlight may cause a harmful algae bloom. These blooms may damage aquatic ecosystems by blocking sunlight and depleting oxygen that other organisms need to survive.

-Algae blooms have been increasing globally, and climate change may be playing a role in the increment. For instance, during the warm summer season or when water is warmer, some harmful types of algae to grow faster than other, more benign varieties.

-Additionally, the warmer surface water also prevents water from mixing vertically, allowing algae to grow thicker and faster.

Alborosie2 years ago
3 0

Answer: b. Increased levels of carbon dioxide, a greenhouse gas, leads to increased phytoplankton growth.

Explanation:

The air contains huge amount of toxic pollutants such as carbon dioxide, carbon monoxide and greenhouse gases which are responsible for raising the global temperatures. These gases get mixed with the water body. Some gases like carbon dioxide and other greenhouse gases mixed with the molecules of water and forms organic matter which is necessary for the growth of underwater plantation or growth of the algae or phytoplanktons in the water body.  This phenomena is called as eutrophication. This will deplete the amount of oxygen in the water hence, will cause the decline in the population of aquatic animals in the water body.  

On the basis of the above description, climate change will lead to an increase in algal bloom this will b. Increased levels of carbon dioxide, a greenhouse gas, leads to increased phytoplankton growth.

You might be interested in
The wavelength of green light is 550 nm.
SIZIF [17.4K]

Answer:

(a) momentum of photon is 1.205 x 10⁻²⁷ kgm/s

    velocity of electron is 1323.88 m/s

   momentum of the electron is 1.205 x 10⁻²⁷ kgm/s

(b) momentum of photon is 1.506 x 10⁻²⁷ kgm/s

  velocity of electron is 1654.85 m/s

  momentum of the electron is 1.506 x 10⁻²⁷ kgm/s

(c) The momentum of the photon is equal to the momentum of the electron

Explanation:

(a)

wavelength of green light, λ = 550 nm

momentum of photon is given by;

p = \frac{h}{\lambda}\\\\ p = \frac{6.626 *10^{-34}}{550*10^{-9}}\\\\p = 1.205 *10^{-27} \ kg.m/s

velocity of electron is given by;

P = \frac{h}{\lambda} \\\\mv = \frac{h}{\lambda}\\\\v = \frac{h}{m \lambda}\\\\v =   \frac{6.626 *10^{-34}}{(9.1*10^{-31} )(550*10^{-9})}\\\\v = 1323.88 \ m/s

momentum of the electron is given by;

p = mv

p = (9.1 x 10⁻³¹) (1323.88)

p = 1.205 x 10⁻²⁷ kgm/s

(b)

wavelength of red light, λ = 440 nm

momentum of photon is given by;

p = \frac{h}{\lambda}\\\\ p = \frac{6.626 *10^{-34}}{440*10^{-9}}\\\\p = 1.506 *10^{-27} \ kg.m/s

velocity of electron is given by;

v =   \frac{6.626 *10^{-34}}{(9.1*10^{-31} )(440*10^{-9})}\\\\v = 1654.85 \ m/s

momentum of the electron is given by;

p = mv

p =  (9.1 x 10⁻³¹) (1654.85)

p = 1.506 x 10⁻²⁷ kgm/s

(c) The momentum of the photon is equal to the momentum of the electron.

7 0
2 years ago
Consider a very small hole in the bottom of a tank 17.0 cm in diameter filled with water to a heightof 90.0 cm. Find the speed a
umka21 [38]

Answer:

Speed of water, v = 4.2 m/s

Explanation:

Given that,

Diameter of the tank, d = 17 cm

It is placed at a height of 90 cm, h = 0.9 m

We need to find the speed at which the water exits the tank through the hole. It can be calculated using the conservation of energy as :

\dfrac{1}{2}mv^2=mgh

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 0.9}

v = 4.2 m/s

So, the speed of water at which the water exits the tank through the hole is 4.2 m/s. Hence, this is the required solution.

5 0
2 years ago
A block of size 20m x 10 mx 5 m exerts a force of 30N. Calculate the
Orlov [11]

Answer:

We know that force applied per unit area is called pressure.

Pressure = Force/ Area

When force is constant than pressure is inversely proportional to area.

1- Calculating the area of three face:

A1 = 20m x 10 m =200 Square meter

A2 = 10 mx 5 m = 50 Square meter

A3 = 20m x 5 m = 100 Square meter

Therefore A1 is maximum and A2 is minimum.

2- Calculate pressure:

P = F/ A1 = 30 / 200 = 0.15 Nm⁻²  ( minimum pressure)

P = F / A2 = 30 / 50 = 0.6 Nm⁻²   ( maximum pressure)

Hence greater the area less will be the pressure and vice versa.

3 0
2 years ago
Two long straight wires enter a room through a window. One carries a current of 2.9A into the room, while the other carries a cu
Degger [83]

Answer and Explanation:

curents i = 2.9 A

           i ' = 4.4 A

the magnitude (in T.m) of the path integral of B.dl around the window frame = μo * current enclosed

          = μo* ( i '- i )

Since from Ampere's law

where μ o = permeability of free space = 4π * 10 ^-7 H / m

plug the values we get the magnitude (in T.m) of the path integral of B.dl = ( 4π*10^-7 ) (2.9+4.4)

                                 = 1.884 * 10^-6 Tm

4 0
2 years ago
A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
MariettaO [177]

Answer:

4.17 m/s

Explanation:

To solve this problem, let's start by analyzing the vertical motion of the pea.

The initial vertical velocity of the pea is

u_y = u sin \theta = (7.39)(sin 69.0^{\circ})=6.90 m/s

Now we can solve the problem by applying the suvat equation:

v_y^2-u_y^2=2as

where

v_y is the vertical velocity when the pea hits the ceiling

a=g=-9.8 m/s^2 is the acceleration of gravity

s = 1.90 is the distance from the ceiling

Solving for v_y,

v_y = \sqrt{u_y^2+2as}=\sqrt{(6.90)^2+2(-9.8)(1.90)}=3.22 m/s

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

v_x = u cos \theta = (7.39)(cos 69.0^{\circ})=2.65 m/s

Therefore, the speed of the pea when it hits the ceiling is

v=\sqrt{v_x^2+v_y^2}=\sqrt{2.65^2+3.22^2}=4.17 m/s

5 0
2 years ago
Other questions:
  • Is the electric potential energy of a particle with charge q the same at all points on an equipotential surface?
    13·1 answer
  • Argelia has a stack of schoolbooks sitting in the backseat of her car. When Argelia makes a sharp right turn, the books slide to
    11·2 answers
  • Ryan and Becca are moving a folding table out of the sunlight. A cup of lemonade, with the message 0.44 kg is on the table. Becc
    6·1 answer
  • A clock has radius of 0.5m. The outermost point on its minute hand travels along the edge. What is its tangential speed?
    11·1 answer
  • Multiplying or dividing vectors by scalars results in a. vectors. b. scalars. c. vectors if multiplied or scalars if divided. d.
    14·2 answers
  • Urban cities like Atlanta have to contend with a serious problem like pollution. Drivers in California are testing out a car tha
    7·1 answer
  • The heater element of a particular 120-V toaster is a 8.9-m length of nichrome wire, whose diameter is 0.86 mm. The resistivity
    5·1 answer
  • A steel plate shine but wooden vessel desnt
    15·3 answers
  • The potential energy for a certain mass moving in one dimension is given by U(x)=(2.0J/m3)x3−(15J/m2)x2+(36J/m)x−23JU(x)=(2.0J/m
    11·1 answer
  • Water runs through a plumbing with a flow of 0.750m3/s and arrives to every exit of a fountain. At what speed will the water com
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!