Answer:
30 (kg)
Explanation:
therefore the mass of the ball is 2 so 30 (kg)
Answer:
Let us consider the case of a bus turning around a corner with a constant velocity, as the bus approaches the corner, the velocity at say point A is Va, and is tangential to the curve with direction pointing away from the curve. Also, the velocity at another point say point B is Vb and is also tangential to the curve with direction pointing away from the curve.<em> </em><em>Although the velocity at point A and the velocity at point B have the same magnitude, their directions are different (velocity is a vector quantity), and hence we have a change in velocity. By definition, an acceleration occurs when we have a change in velocity, so the bus experiences an acceleration at the corner whose direction is away from the center of the corner</em>.
The acceleration is not aligned with the direction of travel because<em> the change in velocity is at a tangent (directed away) to the direction of travel of the bus.</em>
I made the drawing in the attached file.
I included two figures.
The upper figure shows the effect of:
- multiplying vector A times 1.5.
It is drawn in red with dotted line.
- multiplying vector B times - 3 .
It is drawn in purple with dotted line.
In the lower figure you have the resultant vector: C = 1.5A - 3B.
The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.
Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.
The resultant arrow is the vector C and it is drawn in black dotted line.
Answer: Increase in wave frequency
Explanation:
When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>
In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.
The average current density in the wire is given by:

where I is the current intensity and A is the cross-sectional area of the wire.
The cross-sectional area of the wire is given by:

where r is the radius of the wire. In this problem,
, so the cross-sectional area is

and the average current density is
