answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
2 years ago
5

Li is riding her bicycle at 8.0 m/s. She slows down to 4.0 m/s. Her change in velocity is m/s. If Li takes 2 seconds to make thi

s change, her acceleration is m/s2.
Physics
2 answers:
malfutka [58]2 years ago
8 0
Her change in speed is (4 m/s - 8 m/s) = -4 m/s.

Her acceleration is

(change in speed) / (time for the change)

= ( -4 m/s ) / (2 sec)

= -2 m/s² .
forsale [732]2 years ago
4 0
You will have to use this formula:
v = vo + a \times t

Final Velocity (V) = 4m/s
Initial Velocity (Vo) = 8m/s
Acceleration (a) = ? m/s^2
Time (t) = 2 secs

Then:

-> 4 = 8 + a x 2
-> 4 - 8 = 2a
-> -4 = 2a
-> a = -4/2
-> a = -2 m/s^2

Ps: It's value is negative because the she was in retrograde motion.

Answer: Her acceleration is -2 m/s^2.
You might be interested in
At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
Margaret [11]

Answer:

Part a)

t = \sqrt{\frac{2h}{g}}

Part b)

t = 1.06 s

Part c)

L  = 4.86 m

Explanation:

Part a)

The height of the diving board is given as

h = 5.5 m

now the speed of the diver is given as

v_0 = 2.7 m/s

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board

So we will have

y = v_y t + \frac{1}{2}at^2

h = 0 + \frac{1}{2}gt^2

t = \sqrt{\frac{2h}{g}}

Part b)

t = \sqrt{\frac{2h}{g}}

plug in the values in the above equation

t = \sqrt{\frac{2(5.5 m)}{9.81}

t = 1.06 s

Part c)

Horizontal distance moved by the diver is given as

d = v_0 t

d = 2.7 \times 1.06

d = 2.86 m

so the distance from the edge of the pool is given as

L = 2.86 + 2

L  = 4.86 m

4 0
2 years ago
A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
tiny-mole [99]

Answer:

F=mg(sin(\theta )-0.25 cos(\theta ))

Explanation:

The free body diagram of the block on the slide is shown in the below figure

Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces

N is the reaction force between the block and the slide

For equilibrium along x-axis we have

\sum F_{x}=0\\\\mgsin(\theta )-\mu N-F=0\\\therefore F=mgsin(\theta)-\mu N......(\alpha )\\Similarly\\\sum F_{y}=0\\\\N-mgcos(\theta )=0\\\therefore N=mgcos(\theta ).......(\beta )\\\\

Using value of N from equation β in α we get value of force as

F=mg(sin(\theta )-\mu cos(\theta ))

Applying values we get

F=mg(sin(\theta )-0.25 cos(\theta ))

8 0
2 years ago
Read 2 more answers
Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
EleoNora [17]
Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ...  V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1;  -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1;  -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
3 0
2 years ago
Read 2 more answers
A submarine completed a 450 km training with an average speed of 50 km/h. For the first 180 km, it travelled at an average speed
Kryger [21]

Answer:

45km/hr

Explanation:

Total distance=450km

Total speed=50km/hr

Total time= distance/speed

=450/50

=9hrs

distance a=180km

speed a=60km/hr

Time a=180/60

=3hrs

Distance b=450-180=270km

Speed b=?

Time b=270/speed b

Total time=time a + time b

9=3+(270/speed b)

270/speed b =9-3

270/speed b =6

6*speed b =270

Speed b=270/6

Speed b=45km/hr

4 0
2 years ago
Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
trasher [3.6K]
<span>If the maximum permissible limit for depression of the structure is 20 centimeters, the number of floors that can be safely added to the building is </span><span>C. 18</span>

depression = (depression/floor)(# floors) < 20

Here are the following choices:
<span>A. 14
B. 15
C. 18
D. 23</span>
8 0
2 years ago
Other questions:
  • Pressure and volume changes at a constant temperature can be calculated using
    8·1 answer
  • All forces on the bullets cancel so that the net force on a bullet is zero, which means the bullet has zero acceleration and is
    6·1 answer
  • A piano wire has a length of 81 cm and a mass of 2.0
    6·1 answer
  • What is the atomic number z of 73li?
    12·2 answers
  • A 25 pF parallel-plate capacitor with an air gap between the plates is connected to a 100 V battery. A Teflon slab is then inser
    7·1 answer
  • A signal generator has an output voltage of 2.0 V with no load. When a 600 Ω load is connected to it, the output drops to 1.0 V.
    15·1 answer
  • during a cold winter day, wind at 42 km/h is blowing parallel to a 6-m-high and 10-m-high wall of a house. If the air outside is
    13·1 answer
  • The velocity of a 3.00 kg parti- cle is given by :v = (8.00tiˆ + 3.00t2jˆ) m/s, with time t in seconds. At the instant the net f
    9·1 answer
  • Two golf carts have horns that emit sound with a frequency of 394 Hz. The golf carts are traveling toward one another, each trav
    7·1 answer
  • For a short time the position of a roller-coaster car along its path is defined by the equations r=25 m, θ=(0.3t) rad, and z=(−8
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!