answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
2 years ago
8

The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob

ject's charge q? ( k = 1/4πε 0 = 8.99 × 10 9 N ∙ m 2/C 2)
Physics
1 answer:
givi [52]2 years ago
7 0

Answer:

Charge, Q=1.56\times 10^{-8}\ C

Explanation:

It is given that,

Electric field strength, E = 180000 N/C

Distance from a small object, r = 2.8 cm = 0.028 m

Electric field at a point is given by :

E=\dfrac{kQ}{r^2}

Q is the charge on an object

Q=\dfrac{Er^2}{k}

Q=\dfrac{180000\ N/C\times (0.028\ m)^2}{9\times 10^9\ Nm^2/C^2}

Q=1.56\times 10^{-8}\ C

So, the charge on the object is 1.56\times 10^{-8}\ C. Hence, this is the required solution.

You might be interested in
Physics in motion unit 6a the nature of waves
mylen [45]
What’s the question?
7 0
2 years ago
The dial of a scale looks like this: 00.0kg. A physicist placed a spring on it. The dial read 00.6kg. He then placed a metal cha
saveliy_v [14]

Answer:

d. The scale's resolution is too low to read the change in mass

Explanation:

If we want to find the change in energy of the spring, we will have to use the Hooke's Law. Hooke's Law states that:

F = kx

since,

w = Fd

dw = Fdx

integrating and using value of F, we get:

ΔE = (0.5)kx²

where,

ΔE = Energy added to spring

k = spring constant

x = displacement

The spring constant is typically in range of 4900 to 29400 N/m.

So if we take the extreme case of 29400 N/m and lets say we assume an unusually, extreme case of 1 m compression, we get the value of energy added to be:

ΔE = (0.5)(29400 N/m)(1 m)²

ΔE = 1.47 x 10⁴ J

Now, if we convert this energy to mass from Einstein's equation, we get:

ΔE = Δmc²

Δm = ΔE/c²

Δm = (1.47 x 10⁴ J)/(3 x 10⁸ m/s)²

<u>Δm =  4.9 x 10⁻¹³ kg</u>

As, you can see from the answer that even for the most extreme cases the value of mass associated with the additional energy is of very low magnitude.

Since, the scale only gives the mass value upto 1 decimal place.

Thus, it can not determine such a small change. So, the correct option is:

<u>d. The scale's resolution is too low to read the change in mass</u>

8 0
2 years ago
Ricardo and Jane are standing under a tree in the middle of a pasture. An argument ensues, and they walk away in different direc
Advocard [28]

Answer:

the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south

Explanation:

given information:

Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus

A= 27

Ax =  27 sin 60 = - 23.4

Ay = 27 cos 60 = 13.5

Jane walks 16.0 m in a direction 30.0 ∘ south of west, so

B = 16

Bx = 16 cos 30 = -13.9

By = 16  sin 30 = -8

the direction that should be walked by Ricardo to go directly to Jane

R = √A²+B² - (2ABcos60)

   = √27²+16² - (2(27)(16)(cos 60))

   = 23.52 m

now we can use the sines law to find the angle

tan θ = \frac{R_{y} }{R_{x} }

         = By - Ay/Bx -Ax

         = (-8 - 13.5)/(-13.9 - (-23.4))

     θ  = 90 - (-8 - 13.5)/(-13.9 - (-23.4))

         = 24° east of south

4 0
2 years ago
Please re-explain the following phrases in terms of momentum
zheka24 [161]
A. An object in motion will remain in motion unless acted upon by an outside force : The momentum of an object is constant unless an outside force acts on the object.

B. Force is defined as mass times acceleration : the rate of change of the momentum of a particle is proportional to the force F acting on it, hence the force is equal to <span>mass times acceleration.

C. </span>For every action there is an equal and opposite reaction : <span>to every action force there is an equal and opposite reaction force. </span>
8 0
2 years ago
|| Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r
Otrada [13]

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.

Newton's second law is defined as

F = ma

Where,

m = mass

a = acceleration

From this equation we can figure the acceleration out, then

a = \frac{F}{m}

a = \frac{11*10^3}{80}

a = 137.5m/s

From the cinematic equations of motion we know that

v_f^2-v_i^2 = 2ax

Where,

v_f =Final velocity

v_i =Initial velocity

a = acceleration

x = displacement

There is not Final velocity and the acceleration is equal to the gravity, then

v_f^2-v_i^2 = 2ax

0-v_i^2 = 2(-g)x

v_i =\sqrt{2gx}

v_i = \sqrt{2*9.8*4.8}

v_i = 9.69m/s

From the equation of motion where acceleration is equal to the velocity in function of time we have

a = \frac{v_i}{t}

t = \frac{v_i}{a}

t =\frac{9.69}{137.5}

t = 0.0705s

Therefore the time required is 0.0705s

4 0
2 years ago
Read 2 more answers
Other questions:
  • a very thin layer of gold plating was placed on a metal tray that measures 25.22 cm by 13.22cm. The gold plating increased the m
    8·1 answer
  • somewhere between the earth and the moon is a point where the gravitational attraction of the earth is canceled by the gravitati
    14·1 answer
  • You are standing 10 meters from a light source. Then, you back away from the light source until you are 20 meters away from it.
    6·1 answer
  • A 0.10 kg piece of copper at an initial temperature of 95°c is dropped into 0.20 kg of water contained in a 0.28 kg aluminum cal
    6·1 answer
  • A target in a shooting gallery consists of a vertical square wooden board, 0.250 m on a side and with mass 0.750 kg, that pivots
    14·1 answer
  • Suppose you sketch a model of an atom using the ones here as a guide. How would you build a model that is ionized? How would you
    15·1 answer
  • 3.00 kg block moving 2.09 m/s right hits a 2.22 kg block moving 3.92 m/s left. afterwards, the 3.00 kg block moves 1.71 m/s left
    11·1 answer
  • When you urinate, you increase pressure in your bladder to produce the flow. For an elephant, gravity does the work. An elephant
    12·1 answer
  • POINTS + BRAINLIEST TO CORRECT ANSWER
    5·1 answer
  • What is the mass of a student who weighs 618 Newton?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!