answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
2 years ago
8

The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob

ject's charge q? ( k = 1/4πε 0 = 8.99 × 10 9 N ∙ m 2/C 2)
Physics
1 answer:
givi [52]2 years ago
7 0

Answer:

Charge, Q=1.56\times 10^{-8}\ C

Explanation:

It is given that,

Electric field strength, E = 180000 N/C

Distance from a small object, r = 2.8 cm = 0.028 m

Electric field at a point is given by :

E=\dfrac{kQ}{r^2}

Q is the charge on an object

Q=\dfrac{Er^2}{k}

Q=\dfrac{180000\ N/C\times (0.028\ m)^2}{9\times 10^9\ Nm^2/C^2}

Q=1.56\times 10^{-8}\ C

So, the charge on the object is 1.56\times 10^{-8}\ C. Hence, this is the required solution.

You might be interested in
Our two intrepid relacar drivers are named Pam and Ned. We use these names to make it easy to remember: measurements made by Pam
zhannawk [14.2K]

The velocity of Ned as measured by Pam is the interpretation of v.

Answer: Option D

<u>Explanation:</u>

According to question, we know that this is an issue depending on the logical and translation of the factors. From the measured information taken what is gathered by the two people is communicated and we have given as:

The Ned reference framework : (x, t)  

The Pam reference framework :  \left(x^{\prime}, t^{\prime}\right)

From the reference framework, we realize that ν is the speed of Pam (the other reference framework) as estimation by Ned.  

At that point, v^{\prime} is the speed of Ned (from the other arrangement of the reference) as estimation by Pam.

3 0
2 years ago
A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov
vesna_86 [32]

Answer:

circuit sketched in first attached image.

Second attached image is for calculating the equivalent output resistance

Explanation:

For calculating the output voltage with regarding the first image.

Vout = Vin \frac{R_{2}}{R_{2}+R_{1}}

Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V

For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.

so.

R_{out} = R_{2} || R_{1}\\R_{out} = 2000||3000 = \frac{2000*3000}{2000+3000} = 1200

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.  

if the -5% is applied to both resistors the Voltage is still 5V because the quotient  has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:

Vout = 5 \frac{1900}{4900}\\Vout = 5 \frac{19}{49} = 1.93 V

Vout = 5 \frac{2100}{5100}\\Vout = 5 \frac{21}{51} = 2.05 V

R_{out} = R_{2} || R_{1}\\R_{out} = 1900||2850= \frac{1900*2850}{1900+2850} = 1140

R_{out} = R_{2} || R_{1}\\R_{out} = 2100||3150 = \frac{2100*3150 }{2100+3150 } = 1260

so.

V_{out} = {1.93,2.05}V\\R_{1} = {1900,2100}\\R_{2} = {2850,3150}\\R_{out} = {1140,1260}

4 0
2 years ago
Two speakers both emit sound of frequency 320 Hz, and are in phase. A receiver sits 2.3 m from one speaker, and 2.9 m from the o
satela [25.4K]

Answer:

Option B

Explanation:

The phase difference is found by subtracting the 2.3m for the receiver from the other speaker which is 2.9m hence

Phase difference= 2.9-2.3= 0.6

3 0
2 years ago
A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
jonny [76]

Answer:

<em>Entropy Change = 0.559 Times</em>

Explanation:

Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.

5 0
2 years ago
A 0.300kg glider is moving to the right on a frictionless, ­horizontal air track with a speed of 0.800m/s when it makes a head-o
e-lub [12.9K]

Answer:

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

0.010935 J

0.0858675 J

Explanation:

m_1 = Mass of first glider = 0.3 kg

m_2 = Mass of second glider = 0.15 kg

u_1 = Initial Velocity of first glider = 0.8 m/s

u_2 = Initial Velocity of second glider = 0 m/s

v_1 = Final Velocity of first glider

v_2 = Final Velocity of second glider

As momentum and Energy is conserved

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}

From the two equations we get

v_{1}=\frac{m_1-m_2}{m_1+m_2}u_{1}+\frac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\frac{0.3-0.15}{0.3+0.15}\times 0.8+\frac{2\times 0.15}{0.3+0.15}\times 0\\\Rightarrow v_1=0.27\ m/s

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

v_{2}=\frac{2m_1}{m_1+m_2}u_{1}+\frac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\frac{2\times 0.3}{0.3+0.15}\times 0.8+\frac{0.3-0.15}{0.3+0.15}\times 0\\\Rightarrow v_2=1.067\ m/s

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

Kinetic energy is given by

K=\frac{1}{2}m_1v_1^2\\\Rightarrow K=\frac{1}{2}0.3\times 0.27^2\\\Rightarrow K=0.010935\ J

Final kinetic energy of first glider is 0.010935 J

K=\frac{1}{2}m_2v_2^2\\\Rightarrow K=\frac{1}{2}0.15\times 1.07^2\\\Rightarrow K=0.0858675\ J

Final kinetic energy of second glider is 0.0858675 J

6 0
2 years ago
Other questions:
  • What is the most power in watts the ear can receive before the listener feels pain?
    10·1 answer
  • Consider the vector b⃗ with magnitude 4.00 m at an angle 23.5∘ north of east. what is the x component bx of this vector? express
    6·1 answer
  • Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
    9·2 answers
  • Use scientific (exponential) notation to express the following quantities in terms of the SI base units in
    6·1 answer
  • Two students push a heavy crate across the floor. John pushes with a force of 185 N due east and Joan pushes with a force of 165
    14·1 answer
  • A cable is lifting a construction worker and a crate, as the drawing shows. The weights of the worker and crate are 965 N and 15
    6·1 answer
  • Two girls,(masses m1 and m2) are on roller skates and stand at rest, close to each other and face-to-face. Girl 1 pushes squarel
    10·1 answer
  • Two wires with equal lengths are made of pure copper. The diameter of wire A is three times the diameter of wire B. When 8 kg ma
    7·1 answer
  • Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitt
    6·1 answer
  • When 30 V is applied across a resistor it generates 600 W of heat: what is the magnitude of its resistance?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!