The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
Answer:
The electric field is 
Explanation:
From the question we are told that
The radius of the metal sphere is 
The excess charge which the metal sphere carries is 
The distance of the position being to the center is 
The coulomb constant is 
Generally the electric field is mathematically represented as

substituting values


If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.
Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).
The initial PE = mgh₁ and the initial KE = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
Therefore
(KE + PE) ₁ = (KE + PE)₂
Evaluate the given answers.
A) The total mechanical energy of the system increases.
FALSE
B) Potential energy can be converted into kinetic energy but not vice versa.
TRUE
C) (KE + PE)beginning = (KE + PE) end.
TRUE
D) All of the above.
FALSE
Answer:
Explanation:
We define the linear density of charge as:

Where L is the rod's length, in this case the semicircle's length L = πr
The potential created at the center by an differential element of charge is:

where k is the coulomb's constant
r is the distance from dq to center of the circle
Thus.

Potential at the center of the semicircle
The answers are:
a) 
b) 
Why?
It seems that you forgot to write the questions of the problem, however, in order to help you, I will try to complete it.
The questions are:
a) How much work does the heart do in a day?
b) What is its power output in watts?
So, solving we have:
We need to convert from liter to cubic meters in order to use the given information, so:

Also, we need to find the mass given the density of the blood.

Now, calculating how much work does the heart do in a day, we have:

Then, calculating what is the power output and its horsepower, we have:

Have a nice day!