Newton's third law tells us that for every force there is an equal and opposite force. This means that if Anna exerts a force of 20 Newtons on the box, the box exerts a force of 20 Newtons on Anna.
Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Answer:
10.6 meters.
Explanation:
We use the law of conservation of energy, which says that the total energy of the system must remain constant, namely:

In words this means that the initial kinetic energy of the roller coaster plus its gravitational potential energy minus the energy lost due to friction (1700j) must equal to the final kinetic energy at top of the second hill.
Now let us put in the numerical values in the above equation.




and solve for 

Notice that this height is greater than the initial height the roller coaster started with because the initial kinetic energy it had.
Answer:
If I'm not working I think the answer is C.
The right answer for the question that is being asked and shown above is that: "<span>C) The clouds of dust and gases rotate at high speed > The clouds condense > The sun is born > The planets are born " This is the </span><span>diagram that best represents the steps in the formation of planets</span>