answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
2 years ago
12

Learning goal: to practice problem-solving strategy 6.1 work and kinetic energy. your cat "ms." (mass 8.50 kg ) is trying to mak

e it to the top of a frictionless ramp 2.00 m long and inclined 19.0 ∘ above the horizontal. since the poor cat can't get any traction on the ramp, you push her up the entire length of the ramp by exerting a constant 41.0 n force parallel to the ramp. if ms. is moving at 1.90 m/s at the bottom of the ramp, what is her speed when she reaches the top of the incline?

Physics
1 answer:
ivann1987 [24]2 years ago
3 0
Refer to the diagram shown below.

m = 8.5 kg, the mass of the cat
F = 41.0 N, the force acting up the incline on the cat
θ = 19°, the inclination of the ramp to the horizontal
u = 1.9 m/s, the initial speed along the ramp of the cat
s = 2 m, the length of the ramp
g = 9.8 m/s²
Friction is negligible.

The force F is the component of the cat's weight along the ramp.
F = mg sinθ 
   = (8.5 kg)*(9.8 m/s²) sin(19°)
   = 27. 1198 N

The net force pushing the cat up the ramp is
41.0 - 27.1198 = 13.88 N

If the acceleration of the cat up the ramp is a, then
(8.5 kg)*(a m/s²) = 13.88 N
a = 1.6329 m/s²

Let v =  the velocity at the top of the ramp.
Then
v² = u² + 2as
v² = (1.9 m/s)² + 2*(1.6329 m/s²)*(2 m) = 10.1416 (m/s)²
v = 3.185 m/s

Answer: 3.185 m/s

You might be interested in
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
2 years ago
A proton starts from rest and gains 8.35 x 10^-14 joule of kinetic energy as it accelerates between points A and B in an electri
antoniya [11.8K]

Answer:

5.22 x 10^5 V

Explanation:

guessed on castle learning and got it right

6 0
2 years ago
Read 2 more answers
Torque, a car manufacturer, aims to make its slogan "Burn Rubber" known to every individual in a way that they immediately assoc
mylen [45]

Answer:

A customer is about to buy a limited edition sports car from Torque. It is most likely that the customer will have  d. limited problem solving, in which consumers decision rules to purchase are simple, and are not motivated to search for information about other optons, deciding to buy the car.

Explanation:

a. advertising clutter is the big amount of ad-messages that the consumer is exposed to everyday.

b. high involvement  product or purchases features many variables to be considered by the customer before getting to a decision.

c. cognitive dissonance  or conflicting attitudes causing mental discomfort.

7 0
2 years ago
A hiker walks 9.4 miles at an angle of 60° south of west. Find the west and south components of the walk. Round your answers to
andrey2020 [161]
For this problem, we use our knowledge on trigonometric functions on a right triangle to be able to calculate for the x and y components of the walk. We do as follows:

sin 60 = ax / 9.4
ax = 8.14

cos 60 = ay / 9.4
ay = 4.7
3 0
2 years ago
Read 2 more answers
An infinite sheet of charge is located in the y-z plane at x = 0 and has uniform charge denisity σ1 = 0.51 μC/m2. Another infini
NNADVOKAT [17]

Answer:

 E_total = 5.8 10⁴ N /C

Explanation:

In this problem they ask to find the electric field at two points, the electric field is a vector magnitude, so we can find the field for each charged shoah and add them vectorally at the point of interest.

To find the electric field of a charged conductive sheet, we can use the Gauss law,

        Ф = E. d S = q_{int} / ε₀

Let us use as a Gaussian surface a small cylinder, with the base parallel to the sheet, the electric field between the sheet and the normal one next to the cylinder has 90º, so its scalar product is zero, the electric field between the sheet and the base has An Angle of 0º, therefore the scalar product is reduced to the algebraic product.

Let's look for the electric field for plate 1

The total flow is the same for each face, as there are two sides of the cylinder

       2E A = q_{int} /ε₀

For the internal load we use the concept of surface density

      σ = q_{int1} / A

      q_{int1} = σ₁ A

Let's replace

       2E A = σ₁ A /ε₀

        E₁ = σ₁ / 2ε₀

For the other plate we have a field with a similar expression, but of negative sign

       E₂ = -σ₂ / 2ε₀

The total field is,

        E_total = σ₁ / 2ε₀ + σ₂ / 2ε₀

       E_total = (σ₁ + σ₂) / 2ε₀

Let us apply this expression to our case, when placing a sheet without electric charge, a charge is induced for each sheet, the plate 1 that has a positive charge the electric field is protruding to the right and the plate 2 that has a negative charge creates a incoming field, to the right, as the two fields have the same address add

           The conductive sheet in the middle pate undergoes an induced load that is created by the other two plates, but because the conductive plate the charges are mobile and are replaced.

       E_total = (0.51 +0.52) 10⁻⁶ / 2 8.85 10⁻¹²

       E_total = 5.8 10⁴ N /C

Note that the field is independent of the distance between the plates

4 0
2 years ago
Other questions:
  • a pitcher threw a baseball straight up at 35.8 meters per second. what is the ball's velocity after 2.50 seconds?
    14·1 answer
  • The 12.2-m crane weighs 18 kn and is lifting a 67-kn load. the hoisting cable (tension t1) passes over a pulley at the top of th
    5·1 answer
  • How far could a rabbit run if it ran 36km/h for 5.0min?
    5·2 answers
  • 550 J of work must be done to compress a gas to half its initial volume at constant temperature. How much work must be done to c
    7·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure
    8·1 answer
  • Derive an expression for the acceleration of the car. Express your answer in terms of D and vt Determine the time at which the s
    10·1 answer
  • The arm of a crane at a construction site is 17.0 m long, and it makes an angle of 11.6 ◦ with the horizontal. Assume that the m
    7·1 answer
  • Jordan wants to know the difference between using a 60-W and 100-W lightbulb in her lamp. She calculates the energy it would tak
    14·1 answer
  • Pool girl Paula has a problem. She has dropped two blocks into her pool. One, made of wood, floats on the surface. The other, ma
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!