Answer:
2.25 %
Explanation:
65-95-99.7 is a rule to remember the precentages that lies around the mean.
at the range of mean (
) plus or minus one standard deviation (
),
at the range of mean plus or minus two standard deviation,
at the range of mean plus or minus three standard deviation,
So, note that they are asking about the probability that it is greater than 0.32, that is the mean (0.3) plus two times the standard deviation (0.1) (
)
So we know that the 95.5% is between
and
, hence approximately the 4.5% (100%-95.5%) is greater than 0.32 or less than 0.28. But half (4.5%/2=2.25%) is greater than 0.32 and the other half is less than 0.28.
So
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz
Answer:
Explanation:
Since the front and back of the rocket simultaneously line up with forward and backward end of the platform respectively .
Then length of the platform = length of the train rocket .
A )
Time to cross a particular point on the platform
= length of rocket train / .96 x 3 x 10⁸
= 90 / .96 x 3 x 10⁸
= 31.25 x 10⁻⁸ s
B) Rest length of the rocket = length of platform = 90 m
C ) length of platform as viewed by moving observer =

= 
= 321 m
D ) For the observer on platform time taken = 31.25 x 10⁻⁸ s
for the observer in the rocket , time will be dilated so time recorded by observer in motion ,
8.75 x 10⁻⁸ s .
Answer:
7.894 Hours.
Explanation:
Based on information number hours that this battery will last with give load has mathematical relation of.

with load 60A t = 1h, 30A t = 2h so on and forth.
two head lights draw total current of 2x3.8A = 7.6A.
putting this in above relation gives.
.
That is how long will it be before battery is dead.