answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
2 years ago
14

A 4.5-m-long wooden board with a 24-kg mass is supported in two places. One support is directly under the center of the board, a

nd the other is at one end. What can be said about the forces exerted by the supports?

Physics
2 answers:
JulijaS [17]2 years ago
8 0

All the weight of the wooden board is bear by the support located at the centre of the rod, and the other support which is located at the end, will have no reaction force, or 0 reaction force.

Therefore the reaction at the centre support is equal to the weight of the board, while the support at the end has 0 reaction force.

gogolik [260]2 years ago
4 0

Answer:

The support at the middle of the board exerts an upward force that is equal to the weight of the board mg ( 24x9.81)N which is 235.44N.

The support at the other end exerts no force on the board since the board is already balanced by the middle support.

Explanation:

Detailed explanation and calculation is shown in the image below

You might be interested in
An engineer wants to design a circular racetrack of radius R such that cars of mass m can go around the track at speed without t
gtnhenbr [62]

1. tan \theta = \frac{v^2}{Rg}

For the first part, we just need to write the equation of the forces along two perpendicular directions.

We have actually only two forces acting on the car, if we want it to go around the track without friction:

- The weight of the car, mg, downward

- The normal reaction of the track on the car, N, which is perpendicular to the track itself (see free-body diagram attached)

By resolving the normal reaction along the horizontal and vertical direction, we find the following equations:

N cos \theta = mg (1)

N sin \theta = m \frac{v^2}{R} (2)

where in the second equation, the term m\frac{v^2}{R} represents the centripetal force, with v being the speed of the car and R the radius of the track.

Dividing eq.(2) by eq.(1), we get the  following expression:

tan \theta = \frac{v^2}{Rg}

2. F=\frac{m}{R}(w^2-v^2)

In this second situation, the cars moves around the track at a speed

w>v

This means that the centripetal force term

m\frac{v^2}{R}

is now larger than before, and therefore, the horizontal component of the normal reaction, N sin \theta, is no longer enough to keep the car in circular motion.

This means, therefore, that an additional radial force F is required to keep the car round the track in circular motion, and therefore the equation becomes

N sin \theta + F = m\frac{w^2}{R}

And re-arranging for F,

F=m\frac{w^2}{R}-N sin \theta (3)

But from eq.(2) in the previous part we know that

N sin \theta = m \frac{v^2}{R}

So, susbtituting into eq.(3),

F=m\frac{w^2}{R}-m\frac{v^2}{R}=\frac{m}{R}(w^2-v^2)

4 0
2 years ago
A plane flying at 70.0 m/s suddenly stalls. If the acceleration during the stall is 9.8 m/s2 directly downward, the stall lasts
tino4ka555 [31]

Answer:

v = 66.4 m/s

Explanation:

As we know that plane is moving initially at speed of

v = 70 m/s

now we have

v_x = 70 cos25

v_x = 63.44 m/s

v_y = 70 sin25

v_y = 29.6 m/s

now in Y direction we can use kinematics

v_y = v_i + at

v_y = 29.6 - (9.81 \times 5)

v_y = -19.5 m/s

since there is no acceleration in x direction so here in x direction velocity remains the same

so we will have

v = \sqrt{v_x^2 + v_y^2}

v = \sqrt{63.44^2 + 19.5^2}

v = 66.4 m/s

4 0
2 years ago
Hurryyyyyy When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand p
masya89 [10]
When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand points in the direction that the charge is moving? The answer is <span>thumb.

</span>One way to remember this is that there is one velocity, represented accordingly by the thumb. There are many field lines, represented accordingly by the fingers. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge. Because the force is always perpendicular to the velocity vector, a pure magnetic field will not accelerate a charged particle in a single direction, however will produce circular or helical motion (a concept explored in more detail in future sections). It is important to note that magnetic field will not exert a force on a static electric charge. These two observations are in keeping with the rule that <span>magnetic fields do no </span>work<span>.</span>
6 0
2 years ago
Read 2 more answers
A 0.200-kg mass attached to the end of a spring causes it to stretch 5.0 cm. If another 0.200-kg mass is added to the spring, th
ziro4ka [17]

Answer:

A: 4 times as much

B: 200 N/m

C: 5000 N

D: 84,8 J

Explanation:

A.

In the first question, we have to caculate the constant of the spring with this equation:

m*g=k*x

Getting the k:

k=\frac{m*g}{x} =\frac{0,2[kg]*9,81[\frac{m}{s^{2} } ]}{0,05[m]} =39,24[\frac{N}{m}]

Then we can calculate how much the spring stretch whith the another mass of 0,2kg:

x=\frac{m*g}{k} =\frac{0,4[kg]*9,81[\frac{m}{s^{2} } ]}{39,24[\frac{N}{m}]} =0,1[m]\\

The energy of a spring:

E=\frac{1}{2}*k*x^{2}

For the first case:

E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,05[m])^{2} =0,049 [J]

For the second case:

E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,1[m])^{2} =0,0196 [J]

If you take the relation E2/E1 = 4.

B.

We have the next facts:

x=0,005 m

E = 0,0025 J

Using the energy equation for a spring:

E=\frac{1}{2}*k*x^{2}⇒k=\frac{E*2}{x^{2} } =\frac{0,0025[J]*2}{(0,005[m])^{2} } =200[\frac{N}{m} ]

C.

The potential energy of the diver will be equal to the kinetic energy in the moment befover hitting the watter.

E=W*h=500[N]*10[m]=5000[J]

Watch out the units in this case, the 500 N reffer to the weighs of the diver almost relative to the earth, thats equal to m*g.

D.

The work is equal to the force acting in the direction of the motion. so we have to do the diference beetwen angles to obtain the effective angle where the force is acting: 47-15=32 degree.

The force acting in the direction of the ramp will be the projection of the force in the ramp, equal to F*cos(32). The work will be:

W=F*d=F*cos(32)*d=10N*cos(32)*10m=84,8J

7 0
2 years ago
A circular loop of diameter 10 cm, carrying a current of 0.20 A, is placed inside a magnetic field B⃗ =0.30 Tk^. The normal to t
arlik [135]

Answer:

The magnitude of the torque on the loop due to the magnetic field is 4.7\times10^{-4}\ N-m.

Explanation:

Given that,

Diameter = 10 cm

Current = 0.20 A

Magnetic field = 0.30 T

Unit vectorn=-0.60\hat{i}-0.080\hat{j}

We need to calculate the torque on the loop

Using formula of torque

\tau=NIAB\sin\theta

Where, N = number of turns

A = area

I = current

B = magnetic field

Put the value into the formula

\tau=1\times0.20\times\pi\times(5\times10^{-2})^2\times0.30\times\sin90^{\circ}

\tau=4.7\times10^{-4}\ N-m

Hence, The magnitude of the torque on the loop due to the magnetic field is 4.7\times10^{-4}\ N-m.

5 0
2 years ago
Other questions:
  • a student drops an object from the top of a building which is 19.6 m high. How long does it take the object to fall to the groun
    13·2 answers
  • Which radioactive isotope would take the least amount of time to become stable? rubidium-91 iodine-131 cesium-135 uranium-238
    5·2 answers
  • The heat capacity of an object depends in part on its ____.
    6·1 answer
  • A baseball m=.34kg is spun vertically on a massless string of length l=.52m. the string can only support a tension of tmax=9.9n
    13·2 answers
  • In the winter sport of bobsledding, athletes push their sled along a horizontal ice surface and then hop on the sled as it start
    10·2 answers
  • The force sensor measures the force on the sensor due to the bumper, but the cart's momentum change arises from the force on the
    12·1 answer
  • Thermodynamic Properties: Two identical, sealed, and well-insulated jars contain different gases at the same temperature. Each c
    12·1 answer
  • A certain plucked string produces a fundamental frequency of 150 hz. Which frequency is not one of the harmonics produced by tha
    8·1 answer
  • It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
    9·1 answer
  • A uniform stationary ladder of length L = 4.5 m and mass M = 11 kg leans against a smooth vertical wall, while its bottom legs r
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!