Answer: 9130 joules
Explanation:
Workdone by wheelbarrow = ?
Time = 11 seconds
Power = 830 watts
Recall that power is the rate of doing work. Thus, power is workdone divided by time taken.
i.e Power = (workdone/time)
830 watts = Workdone / 11 seconds
Workdone = 830 watts x 11 seconds
Workdone = 9130 joules
Thus, 9130 joules of work is required to get the wheelbarrow across the yard.
The partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
<u>Explanation:</u>
H₂ + Br₂ ⇒ 2HBr
PH₂ = 0.782atm
PBr₂ = 0.493atm
Kp = (PHBr)²/ (PH₂) (PBr₂) = 1.4 X 10⁻²¹
At equilibrium:
Let 2x = pressure of HBr
PH₂ = 0.782 -x
PBr₂ = 0.493 - x
Kp = (2x)^2 / (0.782-x)(0.493-x)
Now, because Kp is very small, x will be very small compared to 0.782 and 0.493.
Then,
Kp = 1.4X10⁻²¹ = (4x²) / (0.782)(0.493)
x = 1.2X10⁻¹¹
PHBr = 2x = 2.4 X 10⁻¹¹ atm
Therefore, the partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
Answer:
Er = 108 [J]
Explanation:
To solve this problem we must understand that the total energy is 200 [J]. Of this energy 44 [J] are lost in sound and 48 [J] are lost in heat. In such a way that these energy values must be subtracted from the total of the kinetic energy.
200 - 44 - 48 = Er
Where:
Er = remaining energy [J]
Er = 108 [J]
<span>As seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.
Let's assume that both Barbara and Neil start out at coordinate (0,0) and skate for exactly 1 second. Where do they end up?
Barbara is going due south at 5.9 m/s, so she's at (0,-5.9)
Neil is going due west at 1.4 m/s, so he's at (-1.4,0)
Now to see Neil's relative motion to Barbara, compute a translation that will place Barbara back at (0,0) and apply that same translation to Neil. Adding (0,5.9) to their coordinates will do this.
So the translated coordinates for Neil is now (-1.4, 5.9) and Barbara is at (0,0).
The magnitude of Neil's velocity as seen by Barbara is
sqrt((-1.4)^2 + 5.9^2) = sqrt(1.96 + 34.81) = sqrt(36.77) = 6.1 m/s
The angle of his vector relative to due west will be
atan(5.9/1.4) = atan(4.214285714) = 76.7 degrees
So as seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.</span>
As per the question the distance travelled by a car is 28.4 inch.
we are asked to determine the conversion factor in centimeter which when multiplied with 28.4 inch will give a unit.
we know that one inch =2.54 centimeter.
Hence 28.4 inch = 2.54 ×28.4 cm
=72.136 cm.
Now we have to determine the conversion factor .The multiplication factor is calculated as 
[p is the multiplication factor.]
Hence the multiplication factor is 72.137 cm which will give unit conversion when multiplied with 28.4 inch.