Ok, I think this is right but I am not sure:
Q = ϵ
0AE
A= π π
r^2
=(8.85x10^-12 C^2/Nm^2)
( π π (0.02m)^2)
(3x10^6 N/C) =3.3x10^-8 C = 33nC N = Q/e = (3.3x10^-8 C)/(1.60x10^-19 C/electron) = 2.1x10^11 electrons
Answer:
No, i disagree.
Explanation:
If the car is moving, it only has a velocity with a component in the horizontal direction. If we use galilean relativity, the velocity of the ball observed by my friend standing in the ground should only be affected in the horizonal direction, while the vertical stays the same for both observers.
Complete question is;
A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².
What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦
Answer:
14.08°
Explanation:
The time covered will be given by the formula;
t = (2V_x•tan θ)/g
t = (2 × 24 × tan 59)/9.8
t = 8.152 s
Now, the slope of the flight path at the point of impact will be given by the formula;
tan α = V_y/V_x
We are given V_x = 24 m/s
V_y will be gotten from the formula;
v = gt
Thus;
V_y = gt
V_y = 9.8 × (8.152) = 78.89 m/s
Thus;
tan α = 78.89/24
tan α = 3.2871
α = tan^(-1) 3.2871
α = 73.08°
Thus ;
Relative angle φ = α - θ = 73.08 - 59 = 14.08°
Answer:
28√3 m
Explanation:
A = vertex where receiver is placed
S = focus
Bp = r = radius of the outside edge
Bc = 2r = diameter
The full explanation is shown in the picture attached herewith. Thank you and i hope it helps.
The answer is True. The amount force exerted by any object is directly proportional to its mass. This means that our planet is exerting more gravitational force to Angelina, and Angelina is also exerting a gravitational force on our planet directly proportional to her mass. Angelina is actually falling towards the center of the earth,and also our planet is also moving towards Angelina, but it seems negligible with respect to Angelina.Our Sun is so massive that it held our planet in its orbit because of its gravitational force.