Answer:
A. Create radioactive waste i believe
Explanation:
<h2>For Second Solid Lumped System is Applicabe</h2>
Explanation:
Considering heat transfer between two identical hot solid bodies and their environments -
- If the first solid is dropped in a large container filled with water, while the second one is allowed to cool naturally in the air than for second solid, the lumped system analysis more likely to be applicable
- The reason is that a lumped system analysis is more likely to be applicable in the air than in water as the convection heat transfer coefficient so that the Biot number is less than or equal to 0.1 that is much smaller in air
Biot number = the ratio of conduction resistance within the body to convection resistance at the surface of the body
∴ For a lumped system analysis Biot number should be less than 0.1
Answer:
there will be a heat flow from water to the metal ball...
To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N
Answer: 9130 joules
Explanation:
Workdone by wheelbarrow = ?
Time = 11 seconds
Power = 830 watts
Recall that power is the rate of doing work. Thus, power is workdone divided by time taken.
i.e Power = (workdone/time)
830 watts = Workdone / 11 seconds
Workdone = 830 watts x 11 seconds
Workdone = 9130 joules
Thus, 9130 joules of work is required to get the wheelbarrow across the yard.