Answer:
T₂ =602 °C
Explanation:
Given that
T₁ = 227°C =227+273 K
T₁ =500 k
Gauge pressure at condition 1 given = 100 KPa
The absolute pressure at condition 1 will be
P₁ = 100 + 100 KPa
P₁ =200 KPa
Gauge pressure at condition 2 given = 250 KPa
The absolute pressure at condition 2 will be
P₂ = 250 + 100 KPa
P₂ =350 KPa
The temperature at condition 2 = T₂
We know that

T₂ = 875 K
T₂ =875- 273 °C
T₂ =602 °C
C) electrical energy is transformed into heat energy
Answer:
20 cm
Explanation:
We can solve the problem by using the magnification equation:

where
is the size of the image
is the height of the real object (the man)
is the distance of the image from the lens
is the distance of the object (the man) from the lens
Solving the formula for
, we find

And the negative sign means the image is inverted.
<h2>The flux through the infinite charged wire along the central axis of a cylindrical surface of radius r and length l is ∅E = E x 2πrl </h2>
Explanation:
let us consider a thin infinitely long straight wire having a uniform charge density λ Cm⁻¹.To determine the field at a distance r from the line charge , we have cylindrical gaussian surface of radius r, length l,and with its axis along the line charge. it has curved surface S₁ , and flat circular ends S₂ and S₃. Obviously, dS₁//E, dS₂ ⊥E , and dS₃ ⊥ E , so, only the curved surface contributes towards the total flux.
∅E = ∫ E.dS = ∫E.dS₁ +∫E.dS₂ +∫E.dS₃
= ∫EdS₁ cos0⁰ +∫EdS₂ cos 90⁰ +∫Eds₃ cos 90⁰
= E∫ds₁₁ +0+0
= E x area of curved surface
∅E = E x 2πrl