The answer for this problem is clarified through this, the
system is absorbing (+). And now see that it uses that the SURROUNDINGS are
doing 84 KJ of work. Any time a system is overshadowing work done on it by the
surroundings the sign will be +. So it's just 12.4 KJ + 4.2 = 16.6 KJ.
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
Answer:
The wire meet the ground at an angle of 56.4 degrees
Explanation:
It is given that,
To support a tree damaged in a storm, a 12-foot wire is secured from the ground to the tree at a point 10 feet off the ground.
The hypotenuse is, H = 12 foot
The perpendicular distance is, P = 10 feet
The angle between the tree and the ground is 90 degrees
Using Pythagoras theorem as :



So, the wire meet the ground at an angle of 56.4 degrees. Hence, the correct option is (d).
The question is missing, but I guess the problem is asking for the distance between the cliff and the source of the sound.
First of all, we need to calculate the speed of sound at temperature of

:

The sound wave travels from the original point to the cliff and then back again to the original point in a total time of t=4.60 s. If we call L the distance between the source of the sound wave and the cliff, we can write (since the wave moves by uniform motion):

where v is the speed of the wave, 2L is the total distance covered by the wave and t is the time. Re-arranging the formula, we can calculate L, the distance between the source of the sound and the cliff:
Answer:
0.056 psi more pressure is exerted by filled coat rack than an empty coat rack.
Explanation:
First we find the pressure exerted by the rack without coat. So, for that purpose, we use formula:
P₁ = F/A
where,
P₁ = Pressure exerted by empty rack = ?
F = Force exerted by empty rack = Weight of Empty Rack = 40 lb
A = Base Area = 452.4 in²
Therefore,
P₁ = 40 lb/452.4 in²
P₁ = 0.088 psi
Now, we calculate the pressure exerted by the rack along with the coat.
P₂ = F/A
where,
P₂ = Pressure exerted by rack filled with coats= ?
F = Force exerted by filled rack = Weight of Filled Rack = 65 lb
A = Base Area = 452.4 in²
Therefore,
P₂ = 65 lb/452.4 in²
P₂ = 0.144 psi
Now, the difference between both pressures is:
ΔP = P₂ - P₁
ΔP = 0.144 psi - 0.088 psi
<u>ΔP = 0.056 psi</u>