Answer:
Robert Hooke
Was the first to use the word "cell"
Observed cork cells
Anton van Leeuwenhoek
Observed "animalcules"
Used polished lens
.
Explanation:
Anton van Leeuwenhoek is known as father of microbiology. He is credited to improve the quality of lens in microscope. His first observation of organisms called animalcules.
He is credited to have build microscope that could get magnified by 200 times. He used word animalcules for small organisms from pond water when first observed in microscope. He discovered protozoa and named it animalcules".
Robert Hooke is famed for discovering cell from a cork of plant. He observed a compartment or honey comb like divisions when observed these cork cells under the microscope and named it cell. He was only able to see the cell wall as the cork cells are dead cells.
It is given that by using track and cart we can record the time and the distance travelled and also the speed of the cart can be recorded. With all this data we can solve questions on the laws of motion.
Like using the first law of motion we can determine the force of gravity acting on the cart that has moved a certain distance and the velocity or the speed of card has already been registered and since time is known putting the values in formula would help us calculate the gravitational pull acting on cart.
Answer:
ΔLa/ΔLb = 1
Explanation:
The change in length of a solid is given by the following formula:
ΔL = α L ΔT
where,
ΔL = Change in length
α = coefficient of linear expansion
L = Original Length
ΔT = Change in Temperature
Since, the length and change in temperature for both rods are same. Also, the material of each rod is same, which implies that coefficient of linear expansion for both rods is same. Hence, the ratio of change in length of both rods will be:
<u>ΔLa/ΔLb = 1</u>
Answer:
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2
Explanation:
Acceleration is the change in velocity per unit time
a = ∆v/t
Given;
∆v = 50.0miles/hour - 0
∆v = 50.0miles/hours × 1609.344 metres/mile × 1/3600 seconds/hour
∆v = 22.352m/s
t = 2.22 s
So,
Acceleration a = ∆v/t = 22.352m/s ÷ 2.22s
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2