Would presume the energy as kinetic energy.
E = (1/2)*mv²
But m = 0.05kg, velocity here = 0.70c, where c is the speed of light ≈ 3* 10⁸ m/s
Ke = (1/2)*mv² = 0.5*0.05*(0.7*<span>3* 10⁸)</span>² = 1.1025 * 10¹⁵ Joules
There is no exact match from the options.
<span>Nothing, in terms of the chemistry.
The distance between the electrodes affects the electrical resistance very slightly. Increasing the distance increases the resistance and reduces the current slightly, which reduces slightly the amount of product.
For most practical applications, for electrolysis done in a beaker, varying the distance between the electrodes will make little difference.
Increasing the concentration of the electrolyte will increase the current flow because there are more charged particles to carry charge, and increase the product yield.</span>
Answer:
The classification of that same issue in question is characterized below.
Explanation:
The given values are:
Current, I = 50.0 A
Diameter, d = 0.10 cm
(a)...
As we know,
⇒ Magnetic force = Copper wire's weight
So,
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
(b)...
As we know,
⇒ 
⇒ 
⇒ 
⇒
Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Answer:

Explanation:
Position of charge q₁ is (0,0)
Position of charge q₂ is (x₁,0)
So, the electric potential energy between the charges is given by :

Now the position of charge q₂ has been changes from (x₁,0) to (x₂,y₂). Now, electric potential energy between the charges is :

We know form the work energy theorem that, the change in potential energy is equal to the work done. Mathematically, it is given by :





Hence, the work done by the electrostatic force on the moving point charge is
. Hence, this is the required solution.