Answer:
a. mass density
Explanation:
<em>Land and sea breeze that occur near the shore are due to the variation of mass density of air with change in temperature.</em>
- When the air gets heated it becomes rarer in density and thus rises up in the atmosphere and its space is occupied by a cooler and denser air that flows to the place.
<em>During the day the land is warmer than the sea so the sea breeze blows and during the night the water bodies are warmer than the land so the land breeze blows.</em>
Answer:
h=20.66m
Explanation:
First we need the speed when the cord starts stretching:


This will be our initial speed for a balance of energy.
By conservation of energy:

Where
is your height at its maximum elongation
is the height of the bridge
is the length of the unstretched bungee cord

Solving for h:
and
Since 99m is higher than the initial height of 79m, we discard that value.
So, the final height above water is 20.66m
Answer:i=300 mA
Explanation:
Given
inductance(L)=40 mH
Resistor(R)=
Voltage(V)=15 V
Time constant(
)=

current 

Current as a function of time is given by

i= 299.95 mA
Answer:
The body's rotational inertia is greater in layout position than in tucked position. Because the body remains airborne for roughly the same time interval in either position, the gymnast must have much greater kinetic energy in layout position to complete the backflip.
Explanation:
A gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.
When the body is straight , its moment of rotational inertia is more than the case when he folds his body round. Hence rotational inertia ( moment of inertia x angular velocity ) is also greater. To achieve that inertia , there is need of greater imput of energy in the form of kinetic energy which requires greater effort.
So a gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.