Answer:
Acceleration, 
Explanation:
Given that,
The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope, m = 100 kg
Force exerted by the doges on the rope attached to the front sled, F = 240 N
To find,
The acceleration of the sleds.
Solution,
Let a is the acceleration of the sleds. The product of mass and acceleration is called force. Its expression is given by :
F = ma

(m = 2m)

So, the acceleration of the sleds is
.
Answer:
3.964 s
Explanation:
Metric unit conversion:
1 miles = 1.6 km = 1600 m.
1 hour = 60 minutes = 3600 seconds
75 mph = 75 * 1600 / 3600 = 33.3 m/s
22.5 mph = 22.5 * 1600/3600 = 10 m/s
Let g = 9.81 m/s2
Friction is the product of coefficient and normal force, which equals to the gravity

The deceleration caused by friction is friction divided by mass according to Newton 2nd law.

So the time required to decelerate from 33.3 m/s to 10 m/s so the wheels don't slide, with the rate of 5.886 m/s2 is

VO2 max is considered to be the most valid measure<span> of </span>cardio respiratory fitness<span>. It </span>measures<span> the capacity of the heart, lungs, and blood to transport oxygen to the working muscles, and </span>measures<span> the utilization of oxygen by the muscles during exercise.</span>
Answer:
0.9378
Explanation:
Weight (W) of the rider = 100 kg;
since 1 kg = 9.8067 N
100 kg will be = 980.67 N
W = 980.67 N
At the slope of 12%, the angle θ is calculated as:

The drag force D = Wsinθ

where;

A = 0.9 m²
V = 15 m/s
∴
Drag coefficient 


1110 atm
Let's start by calculating how many cm deep is 36,000 feet.
36000 ft * 12 in/ft * 2.54 cm/in = 1097280 cm
Now calculate how much a column of water 1 cm square and that tall would mass.
1097280 cm * 1.04 g/cm^3 = 1141171.2 g/cm^2
We now have a number using g/cm^2 as it's unit and we desire a unit of Pascals ( kg/(m*s^2) ).
It's pretty obvious how to convert from g to kg. But going from cm^2 to m is problematical. Additionally, the s^2 value is also a problem since nothing in the value has seconds as an unit. This indicates that a value has been omitted. We need something with a s^2 term and an additional length term. And what pops into mind is gravitational acceleration which is m/s^2. So let's multiply that in after getting that cm^2 term into m^2 and the g term into kg.
1141171.2 g/cm^2 / 1000 g/kg * 100 cm/m * 100 cm/m = 11411712 kg/m^2
11411712 kg/m^2 * 9.8 m/s^2 = 111834777.6 kg/(m*s^2) = 111834777.6 Pascals
Now to convert to atm
111834777.6 Pa / 1.01x10^5 Pa/atm = 1107.2750 atm
Now we gotta add in the 1 atm that the atmosphere actually provides (but if you look closely, you'll realize that it won't affect the final result).
1107.274 atm + 1 atm = 1108.274 atm
And finally, round to 3 significant figures since that's the accuracy of our data, giving 1110 atm.