answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
2 years ago
9

Geoff counts the number of oscillations of a simple pendulum at a location where the acceleration due to gravity is 9.80 m/s2, a

nd finds that it takes 25.0 s for 15 complete cycles. 1) calculate the length of the pendulum. (express your answer to three significant figures.
Physics
1 answer:
loris [4]2 years ago
7 0
Period of a simple pendulum = 2π √(L/G)

(25 sec/15) = 2π √(L / 9.8 m/s²)

5/3 sec  = 2π √(L/9.8 m/s²)

5 sec / 6π = √ (L/9.8 m/s²)

(5sec · √9.8m/s²) / 6π = √L

Square each side:

(25 s²) · (9.8 m/s²) / 36π²  =  L

L =  (25 · 9.8) / (36 π²) meters

L = 0.69 meter 
You might be interested in
The two hot-air balloons in the drawing are 48.2m and 61.0 m above the ground.A person in the left balloon observes that the rig
mafiozo [28]

Answer:

The horizontal distance x between the two balloons is 54.15 m

Explanation:

The diagram described as obtained online is presented in the image attached to this solution.

Let the horizontal distance between the two balloons be x

Difference in height (vertical distance) between the two balloons = 61 - 48.2 = 12.8 m

Using trigonometric relations, it is evident that

Tan 13.3° = 12.8/x

x = 12.8/tan 13.3° = 12.8/0.2364 = 54.15 m

4 0
2 years ago
A 0.250 kgkg toy is undergoing SHM on the end of a horizontal spring with force constant 300 N/mN/m. When the toy is 0.0120 mm f
konstantin123 [22]

Answer:

(a) The total energy of the object at any point in its motion is 0.0416 J

(b) The amplitude of the motion is 0.0167 m

(c) The maximum speed attained by the object during its motion is 0.577 m/s

Explanation:

Given;

mass of the toy, m = 0.25 kg

force constant of the spring, k = 300 N/m

displacement of the toy, x = 0.012 m

speed of the toy, v = 0.4 m/s

(a) The total energy of the object at any point in its motion

E = ¹/₂mv² + ¹/₂kx²

E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²

E = 0.0416 J

(b) the amplitude of the motion

E = ¹/₂KA²

A = \sqrt{\frac{2E}{K} } \\\\A = \sqrt{\frac{2*0.0416}{300} } \\\\A = 0.0167 \ m

(c) the maximum speed attained by the object during its motion

E = \frac{1}{2} mv_{max}^2\\\\v_{max} = \sqrt{\frac{2E}{m} } \\\\v_{max} = \sqrt{\frac{2*0.0416}{0.25} } \\\\v_{max} = 0.577 \ m/s

8 0
2 years ago
You testify as an expert witness in a case involving an accident in which car A slid into the rear of car B, which was stopped a
bekas [8.4K]

Answer:

A) 12.08 m/s

B) 19.39 m/s

Explanation:

A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:

mg(sinθ) – F_k = ma

Where; F_k is frictional force due to kinetic friction given by the formula;

F_k = (μ_k) × F_n

F_n is normal force given by mgcosθ

Thus;

F_k = μ_k(mg cosθ)

We now have;

mg(sinθ) – μ_k(mg cosθ) = ma

Dividing through by m to get;

g(sinθ) – μ_k(g cosθ) = a

a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)

a = -3.71 m/s²

We are told that distance d = 24.0 m and v_o = 18 m/s

Using newton's 3rd equation of motion, we have;

v = √(v_o² + 2ad)

v = √(18² + (2 × -3.71 × 24))

v = 12.08 m/s

B) Now, μ_k = 0.10

Thus;

a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)

a = 1.08 m/s²

Using newton's 3rd equation of motion, we have;

v = √(v_o + 2ad)

v = √(18² + (2 × 1.08 × 24))

v = 19.39 m/s

6 0
2 years ago
A horizontal spring with spring constant 85 n/m extends outward from a wall just above floor level. a 3.5 kg box sliding across
Rina8888 [55]

k = spring constant of the spring = 85 N/m

m = mass of the box sliding towards the spring = 3.5 kg

v = speed of box just before colliding with the spring = ?

x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m

the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.

Using conservation of energy

Kinetic energy of spring before collision = spring energy of spring after compression

(0.5) m v² = (0.5) k x²

m v² = k x²

inserting the values

(3.5 kg) v² = (85 N/m) (0.065 m)²

v = 0.32 m/s

8 0
2 years ago
What is the explanation for how a modern transmission electron microscope (TEM) can achieve a resolution of about 0.2 nanometers
IgorC [24]

Answer:

Explanation:

A simple light microscope uses light for imaging of objects where as a transmission electron microscope uses a monochromatic beam of electrons.

This beam is passed by a magnetic field which is very strong and thus act as a lens.

Its resolution of very high which is about 0.2 nanometers because of the separation between two atoms.

Because of this reason its resolution is about 1000 times greater than light microscope.

3 0
2 years ago
Other questions:
  • Why are satellites placed into orbit at least 150 km above Earth’s surface?
    12·2 answers
  • Which of the following equations illustrates the law of conservation of matter?
    10·1 answer
  • The work of which scientist(s) helped to explain light's ability to propagate through a vacuum? A. Newton B. Davisson and Germer
    6·2 answers
  • Venn diagrams are used for comparing and contrasting topics. The overlapping sections show characteristics that the topics have
    15·2 answers
  • The following diagram shows resistors in ___ and is ____ of the arrangement of circuit elements in homes.
    6·2 answers
  • What would happen to the apparent change in mass if the direction of the current is reversed?
    12·1 answer
  • A dog is chasing a cat towards a tree. The cat has a 10-yard lead and runs at 6 yards per second. The dog runs at a speed of 8 y
    15·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.Ex
    5·1 answer
  • a) Suppose that the current in the solenoid is I(t). Within the solenoid, but far from its ends, what is the magnetic field B(t)
    12·1 answer
  • Using all three of Newton's laws of motion, carefully describe the motion of a baseball beginning when the ball is resting in th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!