Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired
Answer:
B_o = 1.013μT
Explanation:
To find B_o you take into account the formula for the emf:

where you used that A (area of the loop) is constant, an also the angle between the direction of B and the normal to A.
By applying the derivative you obtain:

when the emf is maximum the angle between B and the normal to A is zero, that is, cosθ = 1 or -1. Furthermore the cos function is 1 or -1. Hence:

hence, B_o = 1.013μT
Answer:
Nails are made of iron. Iron consists of 26 protons and 26 electrons. protons are positively charged and electrons are negatively charged, so this force of attraction keeps the electrons together.
If electrons repel from each other, the positively charge protons and nucleus allow them to move in a definite orbit and prevent them flying out of the nail.
Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Answer:
When the ball goes down its mechanical energy is conserved, ust before touching the ground all the energy is kinetic
When the ball touches the floor, energy has been converted into potential and heat, by the deformation of the ball.
Explanation:
When the ball goes down its mechanical energy is conserved, this is the power energy due to the height it is converted into kinetic energy to medicad that falls, just before touching the ground all the energy is kinetic.
When the ball touches the floor, the kinetic energy is not conserved, but if we define a system formed by the ball and the floor, the amount of movement is conserved, this being an inelastic shock, because the bla and the floor are stuck, so which energy has been converted into potential and energized and heat by the deformation of the ball.
Consequently all the mechanical energy that the ball brings before reaching the ground was converted into potential energy and heat during the crash.