answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
g100num [7]
2 years ago
15

Which of the following best describes an action-reaction pair? A. The Moon Pulls on Earth, and Earth pulls back on the moon. B.

A bed sits on the floor, and Earth's gravity pulls down on the bed. C. A television pushes down on a shelf, and the shelf pulls the television down. D. You kick a wall, and the wall pulls on your foot.
Physics
2 answers:
Papessa [141]2 years ago
4 0
An action-reaction pair would be a pair in which one of the elements exerts a force on the other element (action), and then the other element would respond to this force by exerting another force in the opposite direction (reaction).

From the given choices, we will see that:
For choice A, the moon exerts a force on the earth by pulling it (action) and the earth responds to this force by pulling the moon (reaction in opposite direction of the action).

Therefore, the correct choice would be: 
A. <span>The Moon Pulls on Earth, and Earth pulls back on the moon.</span>
olchik [2.2K]2 years ago
3 0

Answer:

You push on a car and the car pushes back on you

Explanation:

You might be interested in
550 J of work must be done to compress a gas to half its initial volume at constant temperature. How much work must be done to c
Over [174]

Answer:

The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J

Explanation:

The given variables are

Work done = 550 J

Volume change = V₂ - V₁ = -0.5V₁

Thus the product of pressure and volume change = work done by gas, thus

P × -0.5V₁ = 500 J

Hence -PV₁ = 1000 J

also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore  P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂

Also to compress the gas by a factor of 11 we have

P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11  = 909.091 J of work

7 0
2 years ago
Nerve impulses are carried along axons, the elongated fibers that transmit neural signals. We can model an axon as a tube with a
jeka94

Answer:

The resistance of the axon is 1.27\times 10^7\ \Omega.

Explanation:

Given that,

Inner diameter of the model of an axon, d=10\ \mu m

Radius of the model, r=5\ \mu m=5\times 10^{-6}\ m

Resistivity of the fluid inside the tube wall, \rho=0.5\ \Omega -m

Length of the axon, l = 2 mm = 0.002 m

We know that the resistance in terms of resistivity of an object is given by :

R=\rho\dfrac{l}{A}\\\\R=0.5\times \dfrac{0.002}{\pi (5\times 10^{-6})^2}\\\\R=1.27\times 10^7\ \Omega

So, the resistance of the axon is 1.27\times 10^7\ \Omega. Hence, this is the required solution.

8 0
2 years ago
What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
Murrr4er [49]

Complete Question:

The Voyager 1 spacecraft is now beyond the outer reaches of our solar system, but earthbound scientists still receive data from the spacecraft s 20-W radio transmitter. Voyager is expected to continue transmitting until about 2025, when it will be some 25 billion km from Earth.

What s the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmitter on Voyager transmits equally in all directions(isotropically).  In fact, the antenna on Voyager focuses the signal in a beam aimed at the earth, so this problem over-estimates the size of the receiving dish needed.

Answer:

d = 2,236 m.

Explanation:

The received power on Earth, can be calculated as the product of the intensity (or power density) times the area that intercepts the power radiated.

As we assume that  the transmitter antenna is ominidirectional, power is spreading out over a sphere with a radius equal to the distance to the source.

So, we can get the power density as follows:

I = P /A = P / 4*π*r², where P = 20 W, and r= 25 billion km = 25*10¹² m.

⇒ I = 20 W / 4*π* (25*10¹²)² m²

The received power, is just the product of this value times the area of the receiver antenna, which we assumed be a circle of diameter d:

Pr = I. Ar =( 20W / 4*π*(25*10¹²)² m²) * π * (d²/4) = 10⁻²⁰ W

Simplifying common terms, we can solve for d:

d= √(16*(25)²*10⁴/20) = 2,236 m.

3 0
2 years ago
A coaxial cable consists of a thin insulated straight wire carrying a current of 2.00 A surrounded by a cylindrical conductor ca
ella [17]

Answer:

B = 15μT

Explanation:

In order to calculate the magnitude of the magnetic field generated by the coaxial cable you use the Ampere's law, which is given by:

B=\frac{\mu_oI}{2\pi r}       (1)

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

I: current

r: distance from the wire to the point in which B is calculated

In this case you have two currents with opposite directions, which also generates magnetic opposite magnetic fields. Then, you have (but only for r > radius of the cylindrical conductor) the following equation:

B_T=B_1-B_2=\frac{\mu_o I_1}{2\pi r}-\frac{\mu_o I_2}{2\pi r}\\\\B_T=\frac{\mu_o}{2\pi r}(I_1-I_2)  (2)

I1: current of the central wire = 2.00A

I2: current of the cylindrical conductor = 3.50A

r: distance = 2.00 cm = 0.02 m

You replace the values of all parameters in the equation (2), and you use the absolute value because you need the magnitude of B, not its direction.

|B|=|\frac{4\pi*10^{-7}T/A}{2\pi (0.02m)}(2.00A-3.50A)|=1.5*10^{-5}T\\\\|B|=15*10^{-6}T=15\mu T

The agnitude of the magnetic field outside the coaxial cable, at a distance of 2.00cm to the center of the cable is 15μT

3 0
2 years ago
A power plant burns 1000 kg of coal each hour and produces 500 kW of power. Calculate the overall thermal efficiency if each kg
solniwko [45]

Answer:

The overall thermal efficiency is 30%.

Explanation:

Given;

Output power = 500 kWh

input energy  per kg of coal = 6 MJ = 6 x 10⁶ J = 1.66667 kWh

1000 kg of coal will produce 1000 x 1.66667 kWh = 1666.67 kWh

Thus, total input power = 1666.67 kWh

Overall thermal efficiency = Total output power/Total input Power

Overall thermal efficiency = (500/1666.67) *100

Overall thermal efficiency = 0.29999 *100

Overall thermal efficiency = 30%

Therefore, the overall thermal efficiency is 30%.

5 0
2 years ago
Other questions:
  • Pressure and volume changes at a constant temperature can be calculated using
    8·1 answer
  • A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
    8·1 answer
  • A car approaching a stationary observer emits 450. hz from its horn. if the observer detects a frequency pf 470. hz, how fast is
    12·1 answer
  • Imagine you are riding on a yacht in the ocean and traveling at 20 mph. You then hit a golf ball at 100 mph from the deck of the
    6·2 answers
  • You place your hands over a steaming bowl of soup to warm them. Which type of heat transfer are you experiencing?
    10·2 answers
  • A place kicker applies an average force of 2400 N to a football of .040 kg. The force is applied at an angle of 20.0 degrees fro
    10·1 answer
  • A seasoned mini golfer is trying to make par on a tricky number five hole. The golfer can complete the hole by hitting the ball
    15·1 answer
  • A floating leaf oscillates up and down two complete cycles in one second as a water wave passes by. The wave's wavelength is 10
    12·1 answer
  • When working with a razor blade or exacto knife --
    10·1 answer
  • What are the reasons for the establishment of UGA?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!