Say the initial point is (0,0)
The final point is
x = 200 + 135*cos(30) = 200 + 135*sqrt(3)/2 = 316.91 ft
y = 135*sin(30) = 135/2 = 67.5 ft
Resultant vector = (316.91, 67.5) - (0,0) = 316.91, 67.5) ft
Answer:
Speed of the wave is 7.87 m/s.
Explanation:
It is given that, tapping the surface of a pan of water generates 17.5 waves per second.
We know that the number of waves per second is called the frequency of a wave.
So, f = 17.5 Hz
Wavelength of each wave,
Speed of the wave is given by :
v = 7.87 m/s
So, the speed of the wave is 7.87 m/s. Hence, this is the required solution.
Answer:
aaaaa
Explanation:
M = Mass of the Earth
m = Mass of satellite
r = Radius of satellite
G = Gravitational constant




Answer:
a. The temperature of the copper changed more than the temperature of the water.
Explanation:
Because we're only considering the isolated system cube-water, the heat of the system should be constant, that implies the heat the cube loses is equal the heat the water gains (because by zero law of thermodynamics heat (Q) flows from hot body to cold body until reach thermal equilibrium and T1>T2). So:
(1)
But Q is related with mass (m), specific heat (c) and changes in temperature (
)in the next way:
(2)
Using (2) on (1):



Because we have an equality and 0.385 < 4.186 then
to conserve the equality
The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:

For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is