Answer:
part a : <em>The dry unit weight is 0.0616 </em>
<em />
part b : <em>The void ratio is 0.77</em>
part c : <em>Degree of Saturation is 0.43</em>
part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>
Explanation:
Part a
Dry Unit Weight
The dry unit weight is given as

Here
is the dry unit weight which is to be calculated- γ is the bulk unit weight given as

- w is the moisture content in percentage, given as 12%
Substituting values

<em>The dry unit weight is 0.0616 </em>
<em />
Part b
Void Ratio
The void ratio is given as

Here
- e is the void ratio which is to be calculated
is the dry unit weight which is calculated in part a
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
Substituting values

<em>The void ratio is 0.77</em>
Part c
Degree of Saturation
Degree of Saturation is given as

Here
- e is the void ratio which is calculated in part b
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction
Substituting values

<em>Degree of Saturation is 0.43</em>
Part d
Additional Water needed
For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

Here
is the zero air unit weight which is to be calculated
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction

Now as the volume is known, the the overall weight is given as

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.
<span>Answer:
KE = (11/2)mω²r²,
particle B must have mass of 2m, while A has mass m.
Then the moment of inertia of the system is
I = Σ md² = m*(3r)² + 2m*r² = 11mr²
and then
KE = ½Iω² = ½ * 11mr² * ω² = 11mr²ω² / 2
So I'll proceed under that assumption.
For particle A, translational KEa = ½mv²
but v = ω*d = ω*3r, so KEa = ½m(3ωr)² = (9/2)mω²r²
For particld B, translational KEb = ½(2m)v²
but v = ω*r, so KEb = ½(2m)ω²r²
so total translational KE = (9/2 + 2/2)mω²r² = 11mω²r² / 2
which is equal to our rotational KE.</span>
Answer:
1.) Magnitude = 5596 N
2.) Direction = 60 degrees
Explanation: You are given that the breakdown vehicle A is exerting a force of 4000 N at angle 45 degree to the vertical and breakdown vehicle B is exerting a force of 2000 N
Let us resolve the two forces into X and Y component
Sum of the forces in the X - component will be 4000 × cos 45 = 2828.43 N
Sum of the forces in the Y - component will be 2000 + ( 4000 × sin 45 )
= 2000 + 2828.43
= 4828.43 N
The resultant force R will be
R = sqrt ( X^2 + Y^2 )
Substitutes the forces at X component and Y component into the formula
R = sqrt ( 2828.43^2 + 4828.43^2 )
R = sqrt ( 31313752.53 )
R = 5595.87 N
The direction will be
Tan Ø = Y/X
Substitute Y and X into the formula
Tan Ø = 4828.43 / 2828.43
Tan Ø = 1.707106
Ø = tan^-1( 1.707106 )
Ø = 59.64 degree
Therefore, approximately, the magnitude and direction of the resultant force on the truck are 5596 N and 60 degree respectively.
Hublle Space Telescope
- Orbits around Earth.
- Receive light before it enters Earth's Atmosphere.
- Get information about stars before they are born.
Alma Radio Telescope
- Installed on land.
- Receive light after it passes through Earth's Atmosphere.
- Get information about stars after they are born.