answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
1 year ago
5

An object is moving back and forth on the x-axis according to the equation x(t) = 3sin(20πt), t> 0, where x(t) is measured in

cm and t in seconds. Give decimal answers below. (a) How many complete back-and-forth motions (from the origin to the right, back to the origin, to the left and finally back to the origin) does the object make in one second? (b) What is t the first time that the object is at its farthest right? (c) At the time found in part (b), what is the object's velocity? (d) At the time found in part (b), what is the object's acceleration?
Physics
1 answer:
CaHeK987 [17]1 year ago
8 0

Answer:

a.) 10Hz

b.) 0.1 s

c.) 187.4 m/s

d.) -412.6 m/s^2

Explanation:

Given that an object is moving back and forth on the x-axis according to the equation x(t) = 3sin(20πt), t> 0, where x(t) is measured in cm and t in seconds. Give decimal answers below.

(a) How many complete back-and-forth motions (from the origin to the right, back to the origin, to the left and finally back to the origin) does the object make in one second?

from the equation given,  the angular speed w = 20π

but w = 2πf

where f = frequency.

substitute w for 20π

20π = 2πf

f = 20π/2π

f = 10 Hz

(b) What is t the first time that the object is at its farthest right?

since F = 1/T

T = 1 / f

T = 1/10

T = 0.1 s

Therefore, the t of  first time that the object is at its farthest right is 0.1 s

(c) At the time found in part (b), what is the object's velocity?

The velocity can be found by differentiating the equation;

x(t) = 3sin(20πt)

dx/dt = 60πcos(20πt)

where dx/dt  = velocity V

V = 60πcos(20π * 0.1)

V = 187.4 m/s

(d) At the time found in part (b), what is the object's acceleration?

to get the acceleration, differentiate equation  V = 60πcos(20πt)

dv/dt = -1200πSin(20πt)

dv/dt = acceleration a

a = -1200πSin(20πt)

substitute t into the equation

a = -1200πSin(20π * 0.1)

a = - 412.6 m/s^2

You might be interested in
A certain signal molecule S in heart tissue is degraded by two different biochemical pathways: when only Path 1 is active, the h
Misha Larkins [42]

Answer:

Half life of S = 3.76secs

Explanation:

The concept of half life in radioactivity is applied. Half life is the time taken for a radioactive material to decay to half of its initial size.

For part 1 - How much signal will be degraded in 1secs = 1/3.9 = 0.2564

for part 2 - How much signal will be degraded in 1secs = 1/104 = 0.009615

Simply say = 1/3.9 + 1/104 = 0.266015

So both part 1 and part 2 took 1/0.266015 = 3.76secs is the half life of S when both pathways are active

6 0
2 years ago
The model of the atom has changed as scientists have gathered new evidence. Four models of the atom are shown below, but one imp
nexus9112 [7]

Answer: Dalton’s model

Explanation:

In the attached image we can see four atomic models labeled with four letters:

W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.

X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons.  This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.

Y represents Thomson's model, also called  the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.

Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.

So, the only missing model is <u>Dalton's model</u>, which was the first atomic model:  the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.

4 0
2 years ago
Read 2 more answers
1. Each year at a college, there is a tradition of having a hoop rolling competition. Alex rolls his 0.350 kg hoop down the cour
grigory [225]

Question 1:

Answer:

The moment of inertia of Alex's rolling hoop is 0.197 kg \cdot cm^2

Explanation:

<u>Given</u>:

Mass of the hoop = 0.350 g

Radius of the hoop = 75.0 cm

<u>To Find:</u>

The moment of inertia of Alex's rolling hoop = ?

<u>Solution</u><u>:</u>

The moment of inertia  = mr^2

where

m is the mass

r is the radius

Converting cm to m, we get

75.0 cm = 0.75 m

Now substituting the values,

=> moment of inertia  = (0.350)(0.75)^2

=> moment of inertia  = (0.350)(0.5625)

=> moment of inertia  = (0.197)

Question 2:

Answer:

The combined angular momentum of the masses is 1.76 kg m^2 s^{-1}

If she pulls her arms in to 0.12 m, her new linear speed  is  18.33 m/s^2

Explanation:

Given:

Mass  = 2.0 kg

Radius = 0.8 m

Velocity =  1.2 m/s

a.The combined angular momentum of the masses:

L = r \cdot m \cdot v_1

Substituting the values,

L = 0.8 \cdot 2.0 \cdot 1.1

L= 1.76 kg m^2 s^{-1}

b. If she pulls her arms in to 0.12 m, what is her new linear speed

0.12 \cdot 0.8 \cdot v_2 = 1.76

0.096 cdot v_2 = 1.76

v_2 = \frac{1.76}{0.096}

v_2 = 18.33 m/s^2

6 0
2 years ago
Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The mass o
insens350 [35]

Answer:

295.42 N

Explanation:

From Newton's law of universal gravitation.

F = Gmm'/r².................. Equation 1

Where F = Gravitational force, G = Universal constant, m = mass of the human, m' = mass of mass, r = radius of mass.

Given: m = 80 kg, m' = 6.4×10²³ kg, r = 3.4×10⁶ m.

Constant: G = 6.67×10⁻¹¹ Nm²/Kg²

Substitute into equation 1

F =  6.67×10⁻¹¹(80)(6.4×10²³ )/( 3.4×10⁶)²

F = 3415.04×10¹²/(11.56×10¹²)

F = 3415.04/11.56

F = 295.42 N

Hence the gravitational force =  295.42 N

5 0
2 years ago
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
2 years ago
Other questions:
  • A 1700kg rhino charges at a speed of 50.0km/h. What is the magnitude of the average force needed to bring the rhino to a stop in
    12·1 answer
  • What is the total energy released when 9.11 x10^-31 ki?
    7·1 answer
  • Alonzo sprints for 500 meters along a straight track during a race. After crossing the finish line, he to walks back along the t
    14·2 answers
  • Describing the motion of an object can be difficult to do and using graphs help make motion easier to understand. Motion is a ch
    15·2 answers
  • A densly wound cylindrical coil has 210 turns per meter, a 5 cm radius, and carries 38 mA. What is the magnitude of the uniform
    11·1 answer
  • A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 79.6 m/s at ground level.
    11·1 answer
  • The U.S. Department of Energy had plans for a 1500-kg automobile to be powered completely by the rotational kinetic energy of a
    15·1 answer
  • To start the analysis of this circuit you must write energy conservation (loop) equations. Each equation must involve a round-tr
    7·1 answer
  • How long will it take a 2190 W motor to lift a 1.47 x 104 g box, 6.34 x 104 mm vertically.​
    10·1 answer
  • A major disturbance that caused the ecosystem to stabilize at a new equilibrium?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!