The centripetal acceleration of an object is given by the relation,

where Ac = centripetal acceleration =
R = radius of rotation = 15 m
V = speed of astronaut
Hence, 
solving this we get, V = 38.34 m/s
Answer:
Multiple transformations occur because the chemical energy of the fuel is changed to several forms of energy
Explanation:
In a car engine, multiple energy transformation takes place. The chemical energy storef in fuel is transformed into mechanical energy which helps move the wheels of the vehicle.
The mechanical energy can also be transformed into electrical energy through a sort of dynamo system in vehicles. Stereo players use the electrical energy to produce sound.
We see that multiple energy conversions are common in a motor car.
Answer:
for this problem, 2.5 = (5+2/2)-(5-2/2)erf (50×10-6m/2Dt)
It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that D0= 8.5 ×10-5m2/s and Qd= 202,100 J/mol.
we have D= D0exp( -Qd/RT)
=(8.5×105m2/s)exp(-202,100/8.31×1023)
= 4.03 ×10-15m2/s
Answer:

Explanation:
Pressure is measured is
here p is pressure
is density and h is height
We have given pressure
acceleration due to gravity
height =1.163 m

Answer:
r= 2.17 m
Explanation:
Conceptual Analysis:
The electric field at a distance r from a charge line of infinite length and constant charge per unit length is calculated as follows:
E= 2k*(λ/r) Formula (1)
Where:
E: electric field .( N/C)
k: Coulomb electric constant. (N*m²/C²)
λ: linear charge density. (C/m)
r : distance from the charge line to the surface where E calculates (m)
Known data
E= 2.9 N/C
λ = 3.5*10⁻¹⁰ C/m
k= 8.99 *10⁹ N*m²/C²
Problem development
We replace data in the formula (1):
E= 2*k*(λ/r)
2.9= 2*8.99 *10⁹*(3.5*10⁻¹⁰/r)
r =( 2*8.99 *10⁹*3.5*10⁻¹⁰) / (2.9)
r= 2.17 m