answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
2 years ago
11

A non-uniform rod 60cm long and weighs 32N is balanced at the 45cm mark. A load of 2N is hung on the zinc rod at the 25cm mark.

Where must a second knife-edge be placed to balance the zinc rod horizontally​
Physics
1 answer:
Pavlova-9 [17]2 years ago
7 0

Answer:

The second knife-edge must be placed 46.2 cm from the zero mark of the rod.

Explanation:

From the law of equilibrium, ΣF = 0 and ΣM = 0.

Let R be the reaction at the knife edge. Since the weight of the rod and zinc load act downward, and we take downward position as negative

-32 N - 2 N + R = 0

-34 N = -R

R = 34 N

Also, let us assume the knife-edge is x cm from the zero mark. Taking moments about the weight and assuming the knife-edge is right of the weight of the rod. Taking clockwise moments as positive and anti-clockwise moments as negative,

-(45 - 25)2 + (x - 45)R = 0

-(20)2 + (x - 45)34 = 0

-40 = -(x - 45)34  

x - 45 = 40/34

x - 45 = 1.18

x = 45 + 1.18

x = 46.18 cm

x ≅ 46.2 cm

The second knife-edge must be placed 46.2 cm from the zero mark of the rod.

You might be interested in
A rock of mass m is thrown horizontally off a building from a height h. the speed of the rock as it leaves the thrower's hand at
Stells [14]
The correct answer is <span>3) K_f =  \frac{1}{2}mv_0^2 + mgh.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>E=U_i+K_i=mgh +  \frac{1}{2}mv_0^2
<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy: 
</span>E=K_f<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>K_f = mgh +  \frac{1}{2}mv_0^2<span>
</span>

7 0
2 years ago
You hear the engine roaring on a race car at the starting line. Predict the changes in the sound as the race starts and the car
gogolik [260]

B. The sound of the engine will get louder and the pitch higher.

4 0
2 years ago
Read 2 more answers
A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .
rjkz [21]

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

5 0
2 years ago
Read 2 more answers
An electric device, which heats water by immersing a resistance wire in the water, generates 50 cal of heat per second when an e
Oksi-84 [34.3K]

Answer:

0.69 ohm

Explanation:

Heat generated per second, H = 50 cal/s

Potential difference, V = 12 V

Let R is the resistance of coil.

The formula for the heat is given by

H = \frac{V^{2}}{R}t

50\times 4.186 = \frac{12^{2}}{R}\times 1

R = 0.69 ohm

3 0
2 years ago
A baseball thrown at an angle of 60.0° above the horizontal strikes a building 16.0 m away at a point 8.00 m above the point fro
yanalaym [24]

Answer:

a) v_{o} =16m/s

b) v=9.8m/s

c) \beta =-35.46º

Explanation:

From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial

Being said that, we can calculate the initial velocity of the ball

a) First we analyze its horizontal motion

x=v_{ox}t

x=v_{o}cos(60)t

v_{o}=\frac{x}{tcos(60)}=\frac{16m}{tcos(60)} (1)

That would be our first equation

Now, we need to analyze its vertical motion

y=y_{o}+v_{oy}t+\frac{1}{2}gt^2

y_{o}+8=y_{o}+v_{o}sin(60)t-\frac{1}{2}(9.8)t^2

Knowing v_{o} in our first equation (1)

8=\frac{16}{tcos(60)}sin(60)t-\frac{1}{2}(9.8)t^2

\frac{1}{2}(9.8)t^2=16tan(60)-8

Solving for t

t=\sqrt{\frac{2(16tan(60)-8)}{9.8} } =2s

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

v_{o}=\frac{16m}{(2s)cos(60)}=16m/s

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components

v_{x}=v_{ox}+at=16cos(60)=8m/s

v_{y}=v_{oy}+gt=16sin(60)-(9.8)(2)=-5.7m/s

So, the magnitude of the velocity is:

v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(8m/s)^2+(-5.7m/s)^2}=9.8m/s

c) The <u><em>direction of the ball</em></u> is:

\beta=tan^{-1}(\frac{v_{y} }{v_{x}})=tan^{-1}(\frac{-5.7}{8})=-35.46º

4 0
2 years ago
Other questions:
  • Can a small child play with fat child on the seesaw?Explain how?
    14·2 answers
  • Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
    14·2 answers
  • Why does a clear stream always appear to be shallower than it actually is?
    14·2 answers
  • A 0.0500-kg golf ball heads off from the tee with an initial speed of 78.2 m/s and reaches to its maximum height of 37.8 m. If a
    6·1 answer
  • A child on a sled starts from rest at the top of a 15.0° slope. If the trip to the bottom takes 22.6 s how long is the slope? As
    11·1 answer
  • a 0.0215m diameter coin rolls up a 20 degree inclined plane. the coin starts with an initial angular speed of 55.2rad/s and roll
    6·1 answer
  • The human head weighs 4.8 kg and its center of mas 1.8 cm in front of the spinal column joint. If the trapezius muscle inserts 1
    6·2 answers
  • HELP ME ASAP!!!!! A patient in the hospital is undergoing testing. The patient's brain is sending electrical signals to motor ne
    7·1 answer
  • Difference between calorimeter and thermometer ?
    8·2 answers
  • g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!