answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
2 years ago
11

(HELP!!! 30 pts if answered right. )What formula gives the strength of an electric field, E, at a distance from a known source c

harge? E = Startfraction F Subscript e baseline over q times d Endfraction. E = Startfraction k times q over d Endfraction. E = Startfraction k times q over d Superscript 2 baseline Endfraction. E = Startfraction F Subscript e baseline over d Endfraction.
Physics
1 answer:
umka2103 [35]2 years ago
8 0

Answer:

E=\frac{k\,Q}{d^2}

Explanation:

The strength of an electric field E produced by a single charge Q at a distance d from it is given by the formula: E=\frac{k\,Q}{d^2}, where K represents the Coulomb constant.

Since the electric field E is derived from the Coulomb Force per unit charge using a positive test charge, the field's units will be in units of Newtons/Coulomb, and be the formula for the Coulomb electric force between to charges (Q1 and Q2),

F_C=k\frac{Q_1\,Q_2}{d^2}

but modified with only one charge showing in the numerator of the expression.

You might be interested in
Physics Help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
djverab [1.8K]
Good work on solving part a).
b) may look complicated, but it's not too bad.

It says that the body is 25% efficient in converting fat to mechanical energy.
In other words, only 25% of the energy we get from our stored fat shows up
in the physical, mechanical moving around that we do.  (The rest becomes
heat, which dissipates into the environment as we keep our bodies warm,
breathe hot air out,and perspire.)

You already know how much mechanical energy the climber needed to lift
himself to the top of the mountain... 2.4x10⁶ joules.
That's 25% of what he needs to convert in order to accomplish the climb.
He needs to pull 4 times as much energy out of fat.

-- Fat energy required = 4 x (2.4 x 10⁶) = 9.6 x 10⁶ joules.

-- Amount stored in 1kg of fat = 3.8 x 10⁷ joules

-- Portion of a kilogram he needs to use =   (9.6 x 10⁶) / (3.8 x 10⁷)

Note:
That much of a kilogram weighs about 8.9 ounces ... which shows why it's so
hard to lose weight with physical exercise alone.  It also helps you appreciate
that fat is much more efficient at storing energy than batteries are ... that one
kilogram of fat stores the amount of energy used by a 100-watt light bulb, to
burn for 105 hours (more than 4-1/2 days ! ! !)

5 0
2 years ago
Read 2 more answers
Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller
kobusy [5.1K]

Answer:

σ₁ = 3.167 * 10^{-6} C/m²

σ₂ = 7.6 * 10 ^{-6}  C/m²

Explanation:

The given data :-

i) The radius of smaller sphere ( r ) = 5 cm.

ii) The radius of larger sphere ( R ) = 12 cm.

iii) The electric field at of larger sphere  ( E₁ ) = 358 kV/m. = 358 * 1000 v/m

E_{1} = (\frac{1}{4\pi\epsilon  }) (\frac{Q_{1} }{R^{2} } )

358000 = 9 * 10^{9 } *\frac{Q_{1} }{0.12^{2} }

Q₁ = 572.8 * 10^{-9} C

Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.

V = constant

∴\frac{Q_{1} }{R} = \frac{Q_{2} }{r}

Q_{2}  = \frac{r}{R} *Q_{1}

Q_{2} = \frac{5}{12} *572.8*10^{-9}   = 238.666 *10^{-9} C

Surface charge density ( σ₁ ) for large sphere.

Area ( A₁ )  = 4 * π * R²  = 4 * 3.14 * 0.12 = 0.180864 m².

σ₁  = \frac{Q_{1} }{A_{1} } = \frac{572.8 *10^{-9} }{0.180864} = 3.167 * 10^{-6}  C/m².

Surface charge density ( σ₂ ) for smaller sphere.

Area ( A₂ )  = 4 * π * r²  = 4 * 3.14 * 0.05²  =0.0314 m².

σ₂ =\frac{Q_{2} }{A_{2} } = \frac{238.66 *10^{-9} }{0.0314} = 7.6 * 10 ^{-6} C/m²

8 0
2 years ago
A parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates. A 1.0 g plastic bead, with a charg
marissa [1.9K]

Answer:

Please find the answer in the explanation

Explanation:

Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.

Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.

We can therefore conclude that the upper plate, is positively charged

B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC

3 0
2 years ago
PLEASE HELP!!!!!! WILL GIVE BRAINLIEST TO WHOEVER ANSWERS WITH THE RIGHT ANSWER !!!!!!!! 
Solnce55 [7]

It would be B and D your welcome


7 0
2 years ago
Read 2 more answers
A wire of 1mm diameter and 1m long fixed at one end is stretched by 0.01mm when a lend of 10 kg is attached to its free end.calc
Otrada [13]

Answer:

E = 1.25×10¹³ N/m²

Explanation:

Young's modulus is defined as:

E = stress / strain

E = (F / A) / (dL / L)

E = (F L) / (A dL)

Given:

F = 10 kg × 9.8 m/s² = 98 N

L = 1 m

dL = 10⁻⁵ m

A = π/4 (0.001 m)² = 7.85×10⁻⁷ m²

Solve:

E = (98 N × 1 m) / (7.85×10⁻⁷ m² × 10⁻⁵ m)

E = 1.25×10¹³ N/m²

Round as needed.

5 0
2 years ago
Other questions:
  • what did classical physics predict about electron flow as a result of light shining on a metal surface?
    8·1 answer
  • The gravitational force between two asteroids is 6.2 × 108 n. asteroid y has three times the mass of asteroid z. if the distance
    6·2 answers
  • Un ladrillo se le imparte una velocidad inicial de 6m/s en su trayectoria hacia abajo. ¿cual sera su velocidad final despues de
    9·1 answer
  • A 4.5-m-long wooden board with a 24-kg mass is supported in two places. One support is directly under the center of the board, a
    14·2 answers
  • A point charge of 6.8 C moves at 6.5 × 104 m/s at an angle of 15° to a magnetic field that has a field strength of 1.4 T.
    5·2 answers
  • A bowling ball of mass m=1.7kg is launched from a spring compressed by a distance d=0.31m at an angle of theta=37 measured from
    12·1 answer
  • For a magnetic field strength of 2T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical
    14·1 answer
  • Car A rounds a curve of 150‐m radius at a constant speed of 54 km/h. At the instant represented, car B is moving at 81 km/h but
    11·2 answers
  • A longitudinal wave is observed to be moving along a slinky. Adjacent crests are 2.4 m apart. Exactly 6 crests are observed to m
    11·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!