Answer:
The pressure at this point is 0.875 mPa
Explanation:
Given that,
Flow energy = 124 L/min
Boundary to system P= 108.5 kJ/min

We need to calculate the pressure at this point
Using formula of pressure


Here, 
Where, v = velocity
Put the value into the formula




Hence, The pressure at this point is 0.875 mPa
Answer: 14.52*10^6 m/s
Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.
the change in potential energy for the electron; e*ΔV is equal to energy kinetic gained for the electron so:
e*ΔV=1/2*m*v^2 v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s
Answer:
Change in kinetic energy is ( 26CL³)/3
Explanation:
Given :
Net force applied, F(x) = Cx² ....(1)
Displacement of the particle from xi = L to xf = 3L.
The work-energy theorem states that change in kinetic energy of the particle is equal to the net amount of work is done to displace the particle.
That is,
ΔK = W = ∫F·dx
Substitute equation (1) in the above equation.
ΔK = ∫Cx²dx
The limit of integration from xi = L to xf = 3L, so

Substitute the values of xi and xf in the above equation.


Answer:
The total charge on the rod is 47.8 nC.
Explanation:
Given that,
Charge = 5.0 nC
Length of glass rod= 10 cm
Force = 840 μN
Distance = 4.0 cm
The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector
We need to calculate the electric field
Using formula of electric field intensity

Where, Q = charge on the rod
The force is on the charged bead of charge q placed in the electric field of field strength E
Using formula of force

Put the value into the formula

We need to calculate the total charge on the rod

Put the value into the formula



Hence, The total charge on the rod is 47.8 nC.
Answer:
The speed is 173 m/s.
Explanation:
Given that,
A = 47
B = 14
Length 1 urk = 58.0 m
An hour is divided into 125 time units named dorts.
3600 s = 125 dots
dorts = 28.8 s
Speed v= (25.0+A+B) urks/dort
We need to convert the speed into meters per second
Put the value of A and B into the speed




Hence, The speed is 173 m/s.