Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.
Answer:

Explanation:
Given that,
The radius of sphere, r = 5 cm = 0.05 m
Net charge carries, q = 7.5 µC = 7.5 × 10⁻⁶ C
We need to find the surface charge density on the sphere. Net charge per unit area is called the surface charge density. So,

So, the surface charge density on the sphere is
.
Answer:
a.3.20m
b.0.45cm
Explanation:
a. Equation for minima is defined as: 
Given
,
and
:
#Substitute our variable values in the minima equation to obtain
:

#draw a triangle to find the relationship between
and
.
#where 

Hence the screen is 3.20m from the split.
b. To find the closest minima for green(the fourth min will give you the smallest distance)
#Like with a above, the minima equation will be defined as:
, where
given that it's the minima with the smallest distance.

#we then use
to calculate
=4.5cm
Then from the equation subtract
from
:

Hence, the distance
is 0.45cm
Answer:
B). to the right
Explanation:
Since the direction of magnetic field is into the page
So here we know that

now the velocity is from bottom to top
so we have

now the force on the moving charge is given as

now we have


so force will be towards Right