answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rama09 [41]
2 years ago
12

You decide to work at a heart rate of 150 instead of 120. What area of F.I.T.T. did you change?

Physics
1 answer:
Rina8888 [55]2 years ago
8 0

Key concepts

Heart rate

Exercising

The heart

Cardiovascular system

Health

Introduction

As Valentine's Day approaches, we're increasingly confronted with "artistic" images of the heart. Real hearts hardly resemble to two-lobed shapes adorning cards and candy boxes this time of year. And the actual shape of the human heart is important for its function of supplying blood to the entire body. You have likely noticed that your heart beats more quickly when you exercise. But have you ever taken the time to observe how long it takes to return to its normal rate after you're done exercising? In this science activity you'll get to do some exercises to explore your own heart-rate recovery time.

Background

Your heart is continuously beating to keep blood circulating throughout your body. Its rate changes depending on your activity level; it is lower while you are asleep and at rest and higher while you exercise—to supply your muscles with enough freshly oxygenated blood to keep the functioning at a high level. Because your heart is also a muscle, exercise, in turn, helps keep it healthy. The American Heart Association recommends that a person does exercise that is vigorous enough to raise their heart rate to their target heart-rate zone—50 percent to 85 percent of their maximum heart rate, which is 220 beats per minute (bpm) minus their age for adults—for at least 30 minutes on most days, or about 150 minutes a week in total. So for a 20-year-old, the maximum heart rate would be 200 bpm, with a target heart-rate zone of 100 to 170 bpm. (For those 19 or younger, target zones can vary more than they do for adults.)

i think it will help you...if it help you ...please mark brainless

You might be interested in
A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle
Grace [21]

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

5 0
2 years ago
Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
valentinak56 [21]
The answer is True. The amount force exerted by any object is directly proportional to its mass. This means that our planet is exerting more gravitational force to Angelina, and Angelina is also exerting a gravitational force on our planet directly proportional to her mass. Angelina is actually falling towards the center of the earth,and also our planet is also moving towards Angelina, but it seems negligible with respect to Angelina.Our Sun is so massive that it held our planet in its orbit because of its gravitational force.
8 0
1 year ago
Read 2 more answers
A student, along with her backpack on the floor next to her, are in an elevator that is accelerating upward with acceleration a.
Anna007 [38]

Answer:

\mu_k = \frac{2(vt - L)}{(g + a) t^2}

Explanation:

As we know that backpack is kicked on the rough floor with speed "v"

So here as per force equation in vertical direction we know that

N - mg = ma

so normal force on the block is given as

N = mg + ma

now the magnitude of kinetic friction on the block is given as

F_f = \mu N

F_f = \mu (mg + ma)

now when bag is sliding on the floor then net deceleration of the block due to friction is given as

a = - \frac{F_f}{m}

a = -\mu_k(g + a)

now we know that bag hits the opposite wall at L distance away in time t

so we have

d = v t + \frac{1}{2}at^2

L = vt - \frac{1}{2}(\mu_k)(g + a) t^2

\mu_k = \frac{2(vt - L)}{(g + a) t^2}

8 0
1 year ago
If a single constant force acts on an object that moves on a straight line, the object's velocity is a linear function of time.
olya-2409 [2.1K]

Answer:

F=mkv

Explanation:

Given that

v = v_i - kx

We know that acceleration a given as

a=\dfrac{dv}{dt}

v = v_i - kx

\dfrac{dv}{dt}=\dfrac{dv_i}{dt}-k\dfrac{dx}{dt}

\dfrac{dv}{dt}=0-k\dfrac{dx}{dt}

We know that

F=m\dfrac{dv}{dt}

F=-mk\dfrac{dx}{dt}

F=-mkv

So the magnitude of force F

F=mkv

5 0
2 years ago
: Two containers have a substantial amount of the air evacuated out of them so that the pressure inside is half the pressure at
ser-zykov [4K]

Complete Question

Two containers have a substantial amount of the air evacuated out of them so that the pressure inside is half the pressure at sea level. One container is in Denver at an altitude of about 6,000 ft and the other is in New Orleans (at sea level). The surface area of the container lid is A=0.0155 m. The air pressure in Denver is PD = 79000 Pa. and in New Orleans is PNo = 100250 Pa. Assume the lid is weightless.

Part (a) Write an expression for the force FNo required to remove the container lid in New Orleans.

Part (b) Calculate the force FNo required to lift off the container lid in New Orleans, in newtons.

Part (c) Calculate the force Fp required to lift off the container lid in Denver, in newtons.

Part (d) is more force required to lift the lid in Denver (higher altitude, lower pressure) or New Orleans (lower altitude, higher pressure)?

Answer:

a

The  expression is   F_{No} =   A [P_{No} - \frac{P_{sea}}{2}]

b

F_{No}= 7771.125 \ N

c

 F_p = 2.2*10^{6} N

d

From the value obtained we can say the that the force required to open the lid is higher at Denver

Explanation:

          The altitude of container in Denver is  d_D = 6000 \ ft = 6000 * 0.3048 = 1828.8m

           The surface area of the container lid is A = 0.0155m^2

           The altitude of container in New Orleans  is sea-level

           The air pressure in Denver is  P_D = 79000 \ Pa

            The air pressure in new Orleans is P_{ro} = 100250 \ Pa

Generally force is mathematically represented as

            F_{No} = \Delta P A

  So we are told the pressure inside is  is half the pressure the at sea level so the  the pressure acting on the container would

   The  pressure at sea level is a constant with a  value of  

               P_{sea} = 101000 Pa

So the \Delta P which is the difference in pressure within and outside the container is  

           \Delta P = P_{No} - \frac{P_{sea}}{2}

Therefore

                F_{No} =   A [P_{No} - \frac{P_{sea}}{2}]

Now substituting values

                F_{No} =   0.0155 [100250 - \frac{101000}{2}]

                       F_{No}= 7771.125 \ N

The force to remove the lid in Denver is  

           F_p = \Delta P_d A

So we are told the pressure inside is  is half the pressure the at sea level so the  the pressure acting on the container would

 The  pressure at sea level is a constant with a  value of  

               P_{sea} = 101000 Pa    

 At  sea level the air pressure in Denver is mathematically represented as

              P_D = \rho g h

     =>     g = \frac{P_D}{\rho h}      

Let height at sea level is h = 1

  The air pressure at height d_D

             P_d__{D}} = \rho gd_D

    =>     g = \frac{P_d_D}{\rho d_D}

  Equating the both

                 \frac{P_D}{\rho h}  = \frac{P_d_D}{\rho d_D}

                 P_d_D =  P_D * d_D

Substituting value  

                   P_d__{D}} = 1828.2 * 79000

                    P_d__{D}} = 1.445*10^{8} Pa

    So

              \Delta P_d  = P_{d} _D - \frac{P_{sea}}{2}

=>          \Delta P_d  = 1.445 *10^{8} - \frac{101000}{2}    

                        \Delta P_d = 1.44*10^{8}Pa

  So

               F_p = \Delta P_d A

                  = 1.44*10^8 * 0.0155

              F_p = 2.2*10^{6} N

               

                 

             

             

6 0
2 years ago
Other questions:
  • Which two statements are true about all generators?
    11·2 answers
  • Suppose that a barometer was made using oil with rho=900 kg/m3. What is the height of the barometer at atmospheric pressure?
    10·1 answer
  • An agriculturalist working with Australian pine trees wanted to investigate the relationship between the age and the height of t
    9·1 answer
  • A tennis ball bounces on the floor three times. If each time it loses 22.0% of its energy due to heating, how high does it rise
    9·1 answer
  • Vertically polarized light with an intensity of 36.8 lux passes through a polarizer whose transmission axis is an angle of 51.0°
    15·1 answer
  • A car of mass 1100kg moves at 24 m/s. What is the braking force needed to bring the car to a halt in 2.0 seconds? N
    13·1 answer
  • Describe the distribution of wdiff in terms of its center, shape, and spread, including any plots you use
    6·1 answer
  • Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
    12·1 answer
  • Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
    14·1 answer
  • A pilot in a small plane encounters shifting winds. He flies 26.0 km northeast, then 45.0 km due north. From this point, he flie
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!