Answer:
a) 14.2 atm
b) 4.46 atm
c) 1.06 atm
Explanation:
For an ideal gas,
PV = nRT
P = pressure of the gas
V = volume occupied by the gas
n = number of moles of the gas
R = molar gas constant = 0.08206 L.atm/mol.K
T = temperature of the gas in Kelvin
a) For HF,
P =?, V = 2.5L, n = 1.35 moles, T = 320K
P = 1.35 × 0.08206 × 320/2.5
P = 14.2 atm
b) For NO₂
P =?, V = 4.75L, n = 0.86 moles, T = 300K
P = 0.86 × 0.08206 × 300/4.75
P = 4.46 atm
c) For CO₂
P =?, V = 5.5 × 10⁴ mL = 55L, n = 2.15 moles, T = 57°C = 330K
P = 2.15 × 0.08206 × 330/55
P = 1.06 atm
I believe this ratio is 4:1 due to the inverse square law
Magnetic flux can be calculated by the product of the magnetic field and the area that is perpendicular to the field that it penetrates. It has units of Weber or Tesla-m^2. For the first question, when there is no current in the coil, the flux would be:
ΦB = BA
A = πr^2
A = π(.1 m)^2
A = π/100 m^2
ΦB = 2.60x10^-3 T (π/100 m^2 ) ΦB = 8.17x10^-5 T-m^2 or Wb (This is only for one loop of the coil)
The inductance on the coil given the current flows in a certain direction can be calculated by the product of the total number of turns in the coil and the flux of one loop over the current passing through. We do as follows:
L = N (ΦB ) / I
L = 30 (8.17x10^-5 T-m^2) / 3.80 = 6.44x10^-4 mH
Answer:Radioactive
Explanation:
The radioactive nucleus is the one which does not has enough binding energy to hold the nucleus in a stable state and thus radiates either electron or proton to become a stable element.
A radioactive element is formed when after billions of years such as uranium and thorium. The stability of the nucleus depends upon the opposition of attractive and repulsive force among the nucleus.
Answer: The reference frame of a passenger in a seat near the center of the train
Explanation:
the speed of light is the same for the passenger and the bicyclist
then the avents are simultaneous fo the passenger not for the bicyclist
the delay between the two events for the bicyclist is
Δt=Δd/vs
where
Δd= lenght of train
vs=speed of sound
the reference frame of a passenger in a seat near the center of the train
Solution:
The space and time transformations are:
x' = γ(x - vt)
t' = γ(t - vx/c²).
In the primed frame the two events are simultaneous, so that Δt' = 0. Also here Δx' = 30. In the unprimed frame Δx' = 30 = γ(Δx - v Δt).......(*)
We also have Δt' = 0 = γ(Δt - vΔx/c²)→Δx = c²Δt/v......(**)
Substituting (**) in (*): 30 = γ(c²Δt/v - vΔt))→Δt = 30/(c²/v - v) =
30/(2c - 0.5c) = 6.7 x 10^(-8)s