answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
2 years ago
11

While attempting a landing on the moon, astronauts had to change their landing site and land at a spot that was 4 kilometers awa

y from the original site. Assuming that they were at a height of 137 meters, calculate the horizontal velocity of the spacecraft during touchdown if it lands in a free-fall mode without using retro engines. Consider gravity = 1.63 meters/second^2.
A) 143.23 meters/second

B) 233.33 meters/second

C) 308.88 meters/second

D) 333.44 meters/second
Physics
1 answer:
lesya [120]2 years ago
6 0
The closest answer would be C.
The choices given do not give the exact value. 

To answer this, you just need to remember the main formula:

d = Vit + \frac{1}{2}gt^{2}

Where:
d = distance/displacement
g = acceleration due to gravity
t = time in flight
Vi = initial velocity.

With this formula, you derive all the formulas you need to look for certain components. You need to keep in mind of the following:

---if you are looking for a vertical component(y), you need to use values of vertical motion.

dy = Viyt + \frac{1}{2}gt^{2}

*Viy is always 0m/s at the beginning of a free-fall.

dy = (0m/s)t + \frac{1}{2}gt^{2}

                                             dy = \frac{1}{2}gt^{2}

---If you are looking for a horizontal component(x), you need to use values of horizontal motion. 

dx = Vixt + \frac{1}{2}gt^{2}

*g is always 0m/s² when taking horizontal motion into account. 

dx = Vixt + \frac{1}{2}(0m/s^{2})t^{2}

                                                       dx = Vixt
--- time is the only value that is both vertical and horizontal. 

Okay, let's get back to solving your problem. Let's see what your given is first:
dy = 137m (as long as it refers to height, it is vertical distance)
dx = 4km (the word, far or away usually indicates horizontal distance)
g = 1.63m/s²

The question is how fast was it going horizontally and we can derive it from our equation:

 dx = Vixt

We use this because x means horizontal. But notice that we do not have time yet. So how are we going to solve this 2 variables missing? The key is that time is a horizontal and vertical component. Whatever time it took moving horizontally, it is the same vertically as well. So we use the vertical formula to derive time:

dy = \frac{1}{2}gt^{2}
\frac{2dy}{g}=t^{2}
\sqrt{\frac{2dy}{g}} = \sqrt{t^{2}}
                                           \sqrt{\frac{2dy}{g}} = t

Now plug in what you know and solve for what you don't know:

\sqrt{\frac{2(137m)}{1.63m/s^{2}}} = t
\sqrt{\frac{274m}{1.63m/s^{2}}} = t
\sqrt{168.098s^{2}}=t
12.965s = t

The total time in flight is 12.965s.
Let's round it off to 13s. 

Now that we know that, we can use this in the horizontal formula:
dx = Vixt
4km = Vix(13s)

Hold up! Look at the unit of the horizontal distance. It is in km but all our units are expressed in m so we need to convert that first.

1km = 1,000m
4km = 4,000m


Our new horizontal distance is 4,000m.

Okay, let's wrap this up by solving for what is asked for, using all the derived values. 
dx = Vixt
4,000m = Vix(13s)
\frac{4,000m}{13s} = Vix
308m/s= Vix

The horizontal velocity is 308m/s. 

Such a long explanation I know, but hopefully, you learned from it. 
You might be interested in
The boom hoisting sheave must have pitch diameters of no less than _______times the nominal diameter of the rope used.
alexira [117]

Answer:

18 times

Explanation:

According to the security purposes which is set under the rules and regulation OSHA, which describes all the rights to the worker.

In the boom hoist receiving system all the sheaves which are used should have a pitch diameter of rope not less than 18 times the diameter of the nominal rope which is used.

7 0
2 years ago
Write a hypothesis about the effect of the fan speed on the acceleration of the cart. Use the "if . . . then . . . because . . .
iragen [17]
As an object accelerates i.e., change it's velocity(either direction or speed), the position of the object depends on two factor; If the acceleration was direction based then it might have a zero displacement for eg: if it travels in circle. or it might have a net displacement if it travels in a straight line, quantitatively
s = ut +  \frac{1}{2} at {}^{2}
where,
s = displacement
u = initial velocity
v = final velocity
a = acceleration
t = time

Now, for the hypothesis;
There is no direct relationship between fan speed and acceleration but anyways generally speaking if we do have a relationship that with more fan speed we have a larger displacement of air i.e., a more force i.e., greater acceleration
Thus, it can be said, well not exactly scientific, that with a greater fan speed there will be greater acceleration. if fan speed is increased then acceleration will be more.
:)
8 0
2 years ago
Read 2 more answers
A balance accurate to one-hundredth of a gram measures the mass of a rock to be 56.10 grams. How many significant digits are in
natali 33 [55]
There are 3 significant didgits
3 0
2 years ago
Read 2 more answers
7. A stream of water strikes a stationary turbine blade horizontally, as the drawing illustrates. The oncoming water stream has
NNADVOKAT [17]

Answer:

The magnitude of the average force exerted on the water by the blade is 960 N.

Explanation:

Given that,

The mass of water per second that strikes the blade is, \dfrac{m}{t}=30\ kg/s

Initial speed of the oncoming stream, u = 16 m/s

Final speed of the outgoing water stream, v = -16 m/s

We need to find the magnitude of the average force exerted on the water by the blade. It can be calculated using second law of motion as :

F=\dfrac{\Delta P}{\Delta t}

F=\dfrac{m(v-u)}{\Delta t}

F=30\ kg/s\times (-16-16)\ m/s

F = -960 N

So, the magnitude of the average force exerted on the water by the blade is 960 N. Hence, this is the required solution.

6 0
2 years ago
A dog travels north for 18 meters, east for 8 meters, South for 27 meters and then west for 8 meters. What is the distance the d
Afina-wow [57]
I'm really not sure if this is right but I'll try.
The distance that the dog traveled is probably all of the distances added up. I would guess that it's 67 meters in total. 
The displacement is a little more tricky but you pretty much have to put a mental map in your head. Since East and West are both 8 meters, they cancel each other out. He travels more southern and that means the displacement is 9 meters south of his original location
7 0
2 years ago
Other questions:
  • If the net force acting on an object increases by 50 percent, then the acceleration of the object will
    11·1 answer
  • Zamir and Talia raced through a maze. Zamir walked 2 m north, 2 m east, 4 m south, 2 m east, 4 m north, 2 m east, 3 m south, 4 m
    11·2 answers
  • A car moving with constant acceleration covers the distance between two points 60 m apart in 6.0 s. Its speed as it passes the s
    11·1 answer
  • Why is the entropy change negative for ring closures?
    14·1 answer
  • Which description best explains a molecular bonding?
    5·1 answer
  • A 50-kg platform diver hits the water below with a kinetic energy of 5000 Joules. The height (relative to the water) from which
    15·1 answer
  • The wad of clay of mass m = 0.36 kg is initially moving with a horizontal velocity v1 = 6.0 m/s when it strikes and sticks to th
    7·1 answer
  • One of the Lady Spartans was falling to the ground after
    15·1 answer
  • Which statements describe vectors? Check all that apply. -Vectors have magnitude only. -Vectors have direction only. -Vectors ha
    15·2 answers
  • The electric field of a charge is defined by the force on what kind of particle?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!