answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
2 years ago
11

While attempting a landing on the moon, astronauts had to change their landing site and land at a spot that was 4 kilometers awa

y from the original site. Assuming that they were at a height of 137 meters, calculate the horizontal velocity of the spacecraft during touchdown if it lands in a free-fall mode without using retro engines. Consider gravity = 1.63 meters/second^2.
A) 143.23 meters/second

B) 233.33 meters/second

C) 308.88 meters/second

D) 333.44 meters/second
Physics
1 answer:
lesya [120]2 years ago
6 0
The closest answer would be C.
The choices given do not give the exact value. 

To answer this, you just need to remember the main formula:

d = Vit + \frac{1}{2}gt^{2}

Where:
d = distance/displacement
g = acceleration due to gravity
t = time in flight
Vi = initial velocity.

With this formula, you derive all the formulas you need to look for certain components. You need to keep in mind of the following:

---if you are looking for a vertical component(y), you need to use values of vertical motion.

dy = Viyt + \frac{1}{2}gt^{2}

*Viy is always 0m/s at the beginning of a free-fall.

dy = (0m/s)t + \frac{1}{2}gt^{2}

                                             dy = \frac{1}{2}gt^{2}

---If you are looking for a horizontal component(x), you need to use values of horizontal motion. 

dx = Vixt + \frac{1}{2}gt^{2}

*g is always 0m/s² when taking horizontal motion into account. 

dx = Vixt + \frac{1}{2}(0m/s^{2})t^{2}

                                                       dx = Vixt
--- time is the only value that is both vertical and horizontal. 

Okay, let's get back to solving your problem. Let's see what your given is first:
dy = 137m (as long as it refers to height, it is vertical distance)
dx = 4km (the word, far or away usually indicates horizontal distance)
g = 1.63m/s²

The question is how fast was it going horizontally and we can derive it from our equation:

 dx = Vixt

We use this because x means horizontal. But notice that we do not have time yet. So how are we going to solve this 2 variables missing? The key is that time is a horizontal and vertical component. Whatever time it took moving horizontally, it is the same vertically as well. So we use the vertical formula to derive time:

dy = \frac{1}{2}gt^{2}
\frac{2dy}{g}=t^{2}
\sqrt{\frac{2dy}{g}} = \sqrt{t^{2}}
                                           \sqrt{\frac{2dy}{g}} = t

Now plug in what you know and solve for what you don't know:

\sqrt{\frac{2(137m)}{1.63m/s^{2}}} = t
\sqrt{\frac{274m}{1.63m/s^{2}}} = t
\sqrt{168.098s^{2}}=t
12.965s = t

The total time in flight is 12.965s.
Let's round it off to 13s. 

Now that we know that, we can use this in the horizontal formula:
dx = Vixt
4km = Vix(13s)

Hold up! Look at the unit of the horizontal distance. It is in km but all our units are expressed in m so we need to convert that first.

1km = 1,000m
4km = 4,000m


Our new horizontal distance is 4,000m.

Okay, let's wrap this up by solving for what is asked for, using all the derived values. 
dx = Vixt
4,000m = Vix(13s)
\frac{4,000m}{13s} = Vix
308m/s= Vix

The horizontal velocity is 308m/s. 

Such a long explanation I know, but hopefully, you learned from it. 
You might be interested in
Identify the false statement: Select one:
svet-max [94.6K]

Answer:

D) Synthesizers have always had a well-established presence in standard ensembles

Explanation:

As synthesizers are electronic music instruments that can create the sounds of many different musical instruments, they have been seen as a threat to many musicians since their invention.

8 0
2 years ago
Read 2 more answers
Based on the emf value measured at frame 700, what is the average magnitude of the magnetic field inside the magnet assembly? No
Nadusha1986 [10]

Answer:

The average magnitude of magnetic field B= 0.0433/ d Tesla

(You have not provided length of side of loop, so if you divide this value by length you will get value of magnetic field.)

Explanation:

Induced emf

where B= magnetic field  

d= breadth of rectangular piece

V= velocity with which the rectangular piece = o.o6m/s

n= no of turns  = 10

EMF = 26mV

since d (breadth of the frame) is not given, I will use it as a variable

EMF= n×B×d×V ------------------(1) (EMF induced due to multiple turns)

From eq 1, we get

B= (EMF)/(n d V)

B= (26 X 0.001) / (10 d 0.06)

B= 0.0433/ d Tesla

4 0
2 years ago
A 4.0-mF capacitor initially charged to 50 V and a 6.0-mF capacitor charged to 30 V are connected to each other with the positiv
Juli2301 [7.4K]

Answer:

<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>

Explanation:

The initial charge on 4 mF capacitor  = 4 mf  x 50 V = 200 mC

The initial Charge on 6 mF capacitor  = 6 mf x 30 V =180 mC

Since the negative ends are joined together  the total charge on both capacity would be;

q = q_{1} -q_{2}

q = 200 - 180

q = 20 mC

In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage

q = (4 x V) + (6 x V)

20 = 10 V

V = 2 V

For the final charge on 6.0 mF;

q = CV

q = 6.0 mF x 2 V

q =  12 mC

Therefore the final charge on the 6.0 mF capacitor would be 12 mC

5 0
2 years ago
Read 2 more answers
An x-ray tube is an evacuated glass tube that produces electrons at one end and then accelerates them to very high speeds by the
laila [671]

Answer:

a)  V = 1.866 10² V ,  b)   V = 3.424 10⁵ V , c)   v = 8.1 10⁶ m / s

Explanation:

a) the potential difference is requested to accelerate the electrons up to 2.7% of the speed of light

           v = 0.027 c

           v = 0.027 3 10⁸

           v = 8.1 10⁶ m / s

for this part we can use the conservation of mechanical energy

starting point. When electrons are at rest

           Em₀ = U = q V

final point. Electrons with maximum speed

          Em_f = K = ½ m v2

          Em₀ = Em_{f}

          e V = ½ m v²

          V = ½ m v² / e

let's calculate

          V = ½  9.1 10⁻³¹ (8.1 10⁶)² / 1.6 10⁻¹⁹

          V = 1.866 10² V

           V = 1866 V

         

b) if this acceleration protons is the mass of the proton is m_{p} = 1.67 10-27

          V = ½ 1.67 10⁻²⁷ (8.1 10⁶)² / 1.6 10⁻¹⁹

           V = 3.424 10⁵ V

           V = 342402 V

c)   this potential difference should give the protons the same speed as the electrons

             v = 8.1 10⁶ m / s

5 0
2 years ago
A brick and a feather fall to the earth at their respective terminal velocities. which object experiences the greater force of a
horsena [70]
The brick, even though the brick would end up traveling faster, it most likely has a larger surface area therefore it would have more air resistance.
6 0
1 year ago
Read 2 more answers
Other questions:
  • Henry can lift a 200 N load 20 m up a ladder in 40 s. Ricardo can lift twice the load up one-half the distance in the same amoun
    14·2 answers
  • Will two separate 50db sounds together constitute a 100db sound explain mathematical
    13·1 answer
  • A parachute works because the canvas of the parachute is acted upon by __________.
    5·2 answers
  • Given that the internal energy of water at 28 bar pressure is 988 kJ kg–1 and that the specific volume of water at this pressure
    7·1 answer
  • Two 7.0cm×7.0cm metal electrodes are spaced 1.0 mm apart and connected by wires to the terminals of a 9.0 v battery.
    9·1 answer
  • Inductive charging is used to wirelessly charge electronic devices ranging from toothbrushes to cell phones. Suppose the base un
    14·1 answer
  • A segment of wire of total length 2.0 m is formed into a circular loop having 5.0 turns. If the wire carries a 1.2-A current, de
    6·1 answer
  • Subatomic particles that do not possess any charge but provide mass to atoms are called
    15·1 answer
  • "For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
    9·1 answer
  • Which ramp requires the least amount of force?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!