<span>1.5 minutes per rotation.
The formula for centripetal force is
A = v^2/r
where
A = acceleration
v = velocity
r = radius
So let's substitute the known values and solve for v. So
F = v^2/r
0.98 m/s^2 = v^2/200 m
196 m^2/s^2 = v^2
14 m/s = v
So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin.
Its circumference is 2*pi*r, so
C = 2 * 3.14159 * 200 m
C = 1256.636 m
And we need a velocity of 14 m/s, so
1256.636 m / 14 m/s = 89.75971429 s
Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N
Answer: The paper airplane will create a curved path towards the floor as it is pulled toward <u><em>Earth's center.</em></u>
Explanation: The paper airplane will be pulled to the center because <u><em>Earth has a much greater mass than objects on its surface.</em></u> And it will curve because of the amount of <u><em>force</em></u> you are putting onto the plane.
Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.
The bear fell because it slides to the surface of ice due to lack of friction.
One of these theories is that friction<span> causes the liquid layer of water to form on </span>ice<span>. </span>Friction<span> is the force that generates heat whenever two objects slide against each other. If you rub your hands together, you can feel them heat up. That's </span>friction<span> at work. When a </span>skate<span> moves over the surface of </span>ice, the friction<span> between the </span>skate<span> and the </span>ice<span> generates heat that melts the </span>outermost<span> layer of </span>ice<span>.</span>