Kepler's third law states that, for a planet orbiting around the Sun, the ratio between the cube of the radius of the orbit and the square of the orbital period is a constant:

(1)
where
r is the radius of the orbit
T is the period
G is the gravitational constant
M is the mass of the Sun
Let's convert the radius of the orbit (the distance between the Sun and Neptune) from AU to meters. We know that 1 AU corresponds to 150 million km, so

so the radius of the orbit is

And if we re-arrange the equation (1), we can find the orbital period of Neptune:

We can convert this value into years, to have a more meaningful number. To do that we must divide by 60 (number of seconds in 1 minute) by 60 (number of minutes in 1 hour) by 24 (number of hours in 1 day) by 365 (number of days in 1 year), and we get
Answer:
Explanation:
Given

Em wave is in the form of

where 


Wave constant for EM wave k is

Wavelength of wave 


To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,
The energy of the system having mass m is,

The energy of the system having mass 2m is,

For the two expressions mentioned above remember that the variables mean
m = mass
Angular velocity
A = Amplitude
The energies of the two system are same then,



Remember that

Replacing this value we have then


But the value of the mass was previously given, then



Therefore the ratio of the oscillation amplitudes it is the same.
Answer:
56400Joules
Explanation:
The quantity of heat required is expressed as;
Q = mL
m is the mass = 25g = 0.025kg
L is the latent heat of vaporization for steam = 2.256×10^6J/kg
Substitute into the formula as shown;
Q = 0.025×2.256×10^6
Q = 56400Joules
Hence the quantity of hear required is 56400Joules
Explanation:
It is given that,
Mass of bumper car, m₁ = 202 kg
Initial speed of the bumper car, u₁ = 8.5 m/s
Mass of the other car, m₂ = 355 kg
Initial velocity of the other car is 0 as it at rest, u₂ = 0
Final velocity of the other car after collision, v₂ = 5.8 m/s
Let p₁ is momentum of of 202 kg car, p₁ = m₁v₁
Using the conservation of linear momentum as :


p₁ = m₁v₁ = -342 kg-m/s
So, the momentum of the 202 kg car afterwards is 342 kg-m/s. Hence, this is the required solution.