answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leviafan [203]
2 years ago
8

Which table correctly identifies the abbreviation for SI units of length mass volume and temperature

Physics
1 answer:
SIZIF [17.4K]2 years ago
8 0

Answer: b

Explanation:

Temperature: kelvin

Mass: kilogram

Length: Meter

Volume: Cubic meter

(Apex learning test)

You might be interested in
If the newton is the product of kilograms and meters/second2 what units comprise the pound?
Kobotan [32]

Answer:

Pound is the product of slug and foot/square second.

Explanation:

We are given that

Force=1 N

1N=1kg\times ms^{-2}

We have to find the units comprise the pound.

Force=1 Pound

Mass=Slug

Acceleration=ft/s^2

Therefore,

1 pound=1 slug\times fts^{-2}

Therefore, we can write as 1 pound is equal to the product of slug and ft/square second.

Hence, pound is the product of slug and foot/square second.

6 0
2 years ago
before colliding, the momentum of block A is +15.0 kg m/s. after, block A has a momentum -12.0 kg*m/s. what is the momentum of b
Helen [10]

Answer:

The momentum of block B = 27 Kg m/s

Explanation:

Given,

The initial momentum of block A, MU = 15 Kg m/s

The final momentum of block A, MV = -12 Kg m/s

Consider the block B is initially at rest.

Therefore, the initial momentum of block B, mu = 0

According to the laws of conservation of linear momentum, the momentum of the body before impact is equal to the momentum of the body after impact.

                               <em> MU + mu = MV + mv</em>

                                15  +  (0) = (-12) + mv

                                         mv = 15 + 12

                                              =  27 Kg m/s

Hence, the momentum of the block B after impact is, mv = 27 Kg m/s

3 0
2 years ago
A hockey stick of mass ms and length L is at rest on the ice (which is assumed to be frictionless). A puck with mass mp hits the
krek1111 [17]

Answer:

L = mp*v₀*(ms*D) / (ms + mp)

Explanation:

Given info

ms = mass of the hockey stick

uis = 0 (initial speed of the hockey stick before the collision)

xis = D (initial position of center of mass of the hockey stick before the collision)

mp = mass of the puck

uip = v₀ (initial speed of the puck before the collision)

xip = 0 (initial position of center of mass of the puck before the collision)

If we apply

Ycm = (ms*xis + mp*xip) / (ms + mp)

⇒  Ycm = (ms*D + mp*0) / (ms + mp)

⇒  Ycm = (ms*D) / (ms + mp)

Now, we can apply the equation

L = m*v*R

where m = mp

v = v₀

R = Ycm

then we have

L = mp*v₀*(ms*D) / (ms + mp)

5 0
2 years ago
A worker stands still on a roof sloped at an angle of 35° above the horizontal. He is prevented from slipping by static friction
aleksley [76]

Answer:

99.63 kg

Explanation:

From the force diagram

N = normal force on the worker from the surface of the roof

f = static frictional force = 560 N

θ = angle of the slope = 35

m = mass of the worker

W = weight of the worker = mg

W Cosθ = Component of the weight of worker perpendicular to the surface of roof

W Sinθ = Component of the weight of worker parallel to the surface of roof

From the force diagram, for the worker not to slip, force equation must be

W Sinθ = f

mg Sinθ = f

m (9.8) Sin35 = 560

m = 99.63 kg

5 0
2 years ago
A student releases a block of mass m from rest at the top of a slide of height h1. The block moves down the slide and off the en
Nina [5.8K]

Answer:

B)   d = √  ( 4 h₂ ( H - 2h₂))

Explanation:

A) 1) If the height of the slide is very small, there is no speed to leave the table, therefore do not recreate almost any horizontal distance

2) If the height is very small downwards, it touches the earth a little and the horizon is small,

B) to find an equation for horizontal distance (d)

We must maximize the speed at the bottom of the slide let's use energy

Starting point Higher

         Em₀ = U = m g h₁

Final point. Lower (slide bottom)

           Emf = K + U = ½ m v² + m gh₂

As there is no friction the energy is conserved

            mgh₁ = ½ m v² + mgh₂

            v² = 2 g (h₁-h₂)

This is the speed with which the block leaves the table, bone is the horizontal speed (vₓ)

The distance traveled when leaving the table can be searched with kinematics, projectile launch

          x = v₀ₓ t

         y =  t - ½ g t²

The height is the height of the table (y = h₂), as it comes out horizontally the vertical speed is zero

        t = √ 2h₂ / g

We substitute in the other equation

        d = √ (2g (h₁-h₂))  √ 2h₂ / g

        d = √ (4 h₂ (h₁-h₂))

        H = h₁ + h₂

        h₁ = H -h₂

        d = √  ( 4 h₂ ( H - 2h₂))

Explanation:

7 0
2 years ago
Other questions:
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • The surface pressures at the bases of warm and cold columns of air are equal. air pressure in the warm column of air will ______
    11·1 answer
  • A food department is kept at â12°c by a refrigerator in an environment at 30°c. the total heat gain to the food department is
    13·1 answer
  • A figure skater rotating at 5.00 rad/s with arms extended has a moment of inertia of 2.25 kg·m2. If the arms are pulled in so t
    12·1 answer
  • (a) Triply charged uranium-235 and uranium-238 ions are being separated in a mass spectrometer. (The much rarer uranium-235 is u
    6·1 answer
  • A bowling ball with a negative initial velocity slows down as it rolls down the lane toward the pins. Is the bowling ballâs acce
    13·1 answer
  • Floor lamps usually have a base with large inertia, while the long body and top have much less inertia. Part A If you want to sh
    6·1 answer
  • If there is a negative sign in front of the Hooke's Law equation, what does the force, F, represent?
    6·1 answer
  • The rate of change of atmospheric pressure P with respect to altitude h is proportional to P, provided that the temperature is c
    11·1 answer
  • An infinitely long cylinder of radius R has linear charge density λ. The potential on the surface of the cylinder is V0, and the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!