answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
2 years ago
12

An 18-cm-long bicycle crank arm, with a pedal at one end, is attached to a 20-cm-diameter sprocket, the toothed disk around whic

h the chain moves. A cyclist riding this bike increases her pedaling rate from 60 rpm to 90 rpm in 10 s.
a. What is the tangential acceleration of the pedal?
b. What length of chain passes over the top of the sprocket during this interval?
Physics
1 answer:
Tpy6a [65]2 years ago
6 0

Answer:

Part a)

a = 0.056 m/s^2

Part b)

L = 7.85 m

Explanation:

Part a)

Angular speed of the pedal is changing from 60 rpm to 90 rpm in 10 s

so the angular acceleration is given as

\alpha = \frac{\omega_2 - \omega_1}{\Delta t}

so we will have

\alpha = \frac{2\pi(\frac{90}{60}) - 2\pi(\frac{60}{60})}{10}

\alpha = 0.314 rad/s^2

now the tangential acceleration of the pedal is given as

a = r \alpha

a = 0.18 \times 0.314

a = 0.056 m/s^2

Part b)

Total angular displacement made by the sprocket in the interval of 10 s is given as

\theta = \frac{\omega_f + \omega_i}{2} t

\theta = \frac{2\pi (\frac{90}{60}) + 2\pi (\frac{60}{60})}{2}(10)

\theta = 78.5 radian

now length of the chain passing over it is given as

L = R\theta

L = 0.10 \times 78.5

L = 7.85 m

You might be interested in
A 70 kg student jumps down to form a 1 m high platform. She forgets to bend her knees and her downward motion stops in 0.02 seco
34kurt

Answer:

15,505 N

Explanation:

Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student

-ΔU = ΔK

-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²

-(0 - mgh) = 1/2mv² - 0

mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform  = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.

mgh = 1/2mv²

gh = 1/2v²

v² = 2gh

v = √(2gh)

v = √(2 × 9.8 m/s² × 1 m)

v = √(19.6 m²/s²)

v = 4.43 m/s

Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s

So Ft = m(v' - v)

F = m(v' - v)/t

substituting the values of the variables, we have

F = 70 kg(0 m/s - 4.43 m/s)/0.02 s

= 70 kg(- 4.43 m/s)/0.02 s

= -310.1 kgm/s ÷ 0.02 s

= -15,505 N

So, the force transmitted to her bones is 15,505 N

3 0
2 years ago
If Pete ( mass=90.0kg) weights himself and finds that he weighs 30.0 pounds, how far away from the surface of the earth is he
shutvik [7]

Answer: 9938.8 km

Explanation:

1 pound-force = 4.48 N

30.0 pounds-force = 134.4 N

The force of gravitation between Earth and object on the surface of is given by:

F = \frac{GMm}{R^2} = mg

Where M is the mass of the Earth, m is the mass of the object, R (6371 km) is the radius of the Earth.

At height, h above the surface of the Earth, the weight of the object:

(mg)'= \frac{GMm}{(R+h)^2}

we need to find "h"

taking the ratio of two:

\frac{mg}{(mg)'}=\frac{(R+h)^2}{R^2}\\ \Rightarrow \frac{90kg \times 9.8 m/s^2}{134.4 N}=\frac{(R+h)^2}{R^2}\\ \Rightarrow 6.56 R^2= (R+h)^2 \Rightarrow h= (2.56-1)R\\ \Rightarrow h = 1.56 R = 1.56 \times 6371 km = 9938. 8 km

Hence, Pete would weigh 30 pounds at 9938.8 km above the surface of the Earth.

5 0
2 years ago
What is the work done by the 200.-N tension shown if it is used to drag the 150-N crate 25 m across the floor at a constant spee
WINSTONCH [101]

Answer:

0 J

Explanation:

Work equals force times distance, but the force is zero because the crate being dragged will have zero acceleration. Force equals mass times acceleration and since acceleration is zero, force has to equal zero as well. Since the force is zero, the work required also has to be zero.

8 0
1 year ago
A solid uniform sphere of mass 1.85 kg and diameter 45.0 cm spins about an axle through its center. Starting with an angular vel
KengaRu [80]

Answer:

The net torque is 0.0372 N m.

Explanation:

A rotational body with constant angular acceleration satisfies the kinematic equation:

\omega^{2}=\omega_{0}^{2}+2\alpha\Delta\theta (1)

with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

\frac{\omega^{2}-\omega_{0}^{2}}{2\Delta\theta}=\alpha

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

\alpha=-\frac{-(15.1)^{2}}{2(114.3)}=1.00\frac{rad}{s^{2}}

The negative sign indicates the sphere is slowing down as we expected.

Now with the angular acceleration we can use Newton's second law:

\sum\overrightarrow{\tau}=I\overrightarrow{\alpha} (2)

with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:

I = \frac{2MR^{2}}{5}

With M the mass of the sphere an R its radius, then:

I = \frac{2(1.85)(\frac{0.45}{2})^{2}}{5}=0.037 kg*m^2

Then (2) is:

\sum\overrightarrow{\tau}=0.037(-1.00)=0.037 Nm

7 0
2 years ago
Read 2 more answers
Select the volume units that are greater than one liter.
Andreas93 [3]
A.) kiloliter. 1 kiloliter = 1,000 liters
c.) megaliter. 1 megaliter =  1,000,000 liters


hope this helps
5 0
1 year ago
Read 2 more answers
Other questions:
  • An airplane is traveling due east with a velocity of 7.5 × 102 kilometers/hour. There is a tailwind of 30 kilometers/hour. What
    15·2 answers
  • A helicopter flies 250 km on a straight path in a direction 60° south of east. The east component of the helicopter’s displaceme
    7·2 answers
  • Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    8·1 answer
  • An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and th
    15·1 answer
  • A block moves at 5 m/s in the positive x direction and hits an identical block, initially at rest. A small amount of gunpowder h
    10·1 answer
  • Find the efficiency of a machine that does 800 J of work if the<br> input work is 2,000 J.
    9·1 answer
  • The wavelength of light is 5000 angstrom. Express it in nm and m.
    13·1 answer
  • A 817 kg car has four 8.91 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rot
    12·1 answer
  • Nate throws a ball straight up to Kayla, who is standing on a balcony 3.8 m above Nate. When she catches it, the ball is still m
    7·1 answer
  • Apollo 14 astronaut Alan B. Shepard Jr. used an improvised six-iron to strike two golf balls while on the Fra Mauro region of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!