answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
2 years ago
15

Based on the free-body diagram, the net force acting on this wheelbarrow is {blank} N.

Physics
2 answers:
Semenov [28]2 years ago
5 0

Answer:

diagram?

Explanation:

viva [34]2 years ago
4 0

Answer:

Explanation:

WHERE IS THE FIGURE?

You might be interested in
Under which one of the following circumstances will heat transfer occur via convection? Group of answer choices Convection occur
BartSMP [9]

Answer:

1) in metal object heat transfer through the conduction .In vacuum heat transfer through only radiation .

In only gaseous state or in liquid state the heat transfer through convection hence option D is correct

8 0
2 years ago
Read 2 more answers
A mine car, whose mass is 440kg, rolls at a speed of 0.50m/s on ahorizontal track, as the drawing shows. A 150kg chunk of coalha
ella [17]

Answer: 0.56 m/s

Explanation:

hello, there is 25° inclination angle for the chute in the drawing. Thankfully, I know this problem. The conservation of momentum.

so there are X and Y components for the momentum in this problem. The Y component is not conserved as when the coal gets in the cart, the normal force exerted by the surface reduces it to 0.

Now, the X component is definitely conserved here.

so you have the momentum of the cart which is 440*0.5 added to the momentum of the chunk which is 150*0.8*cos(25°), that is the momentum before the coupling between the objects. Afterwards both objects will have the same velocity, so we write the equation like this:

440*0.5 + 150*0.8*cos(25) = 440*v_{final} + 150*v_{final} \\ => 220+120*cos(25) = (440+150)v_{final} => v_{final} = \frac{220+120*cos(25)}{590}  = 0.56 m/s

3 0
2 years ago
A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
Furkat [3]

Answer:

2.7x10⁻⁸ N/m²

Explanation:

Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

p_{rad} = \frac{I}{c}

<u>Where:</u>

p_{rad}: is the radiation pressure

I: is the intensity of the light = 8.1 W/m²

c: is the speed of light = 3.00x10⁸ m/s

Hence, the radiation pressure is:

p_{rad} = \frac{I}{c} = \frac{8.1 W/m^{2}}{3.00 \cdot 10^{8} m/s} = 2.7 \cdot 10^{-8} N/m^{2}

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².

I hope it helps you!

3 0
2 years ago
Read 2 more answers
A car traveling at speed v takes distance d to stop after the brakes are applied. What is the stopping distance if the car is in
Vikki [24]

49d

<h3>Further explanation</h3>

This case is about uniformly accelerated motion.

<u>Given:</u>

The initial speed was v takes distance d to stop after the brakes are applied.

<u>Question:</u>

What is the stopping distance if the car is initially traveling at speed 7.0v?

Assume that the acceleration due to the braking is the same in both cases. Express your answer using two significant figures.

<u>The Process:</u>

The list of variables to be considered is as follows.

  • \boxed{u \ or \ v_i = initial \ velocity}
  • \boxed{u \ or \ v_t \ or \ v_i = terminal \ or \ final \ velocity}
  • \boxed{a = acceleration \ (constant)}
  • \boxed{d = distance \ travelled}

The formula we follow for this problem are as follows:

\boxed{ \ v^2 = u^2 + 2ad \ }

  • a = acceleration (in m/s²)
  • u = initial velocity  
  • v = final velocity
  • d = distance travelled

Step-1

We substitute v as the initial speed, distance of d, and zero for final speed into the formula.

\boxed{ \ 0 = v^2 + 2ad \ }

\boxed{ \ v^2 = -2ad \ }

Both sides are divided by -2d, we get \boxed{ \ a = \Big( -\frac{v^2}{2d} \Big) \ . . . \ (Equation-1) \ }

Step-2

We substitute 7.0v as the initial speed, zero for final speed, and Equation-1 into the formula.

\boxed{ \ 0 = (7.0v)^2 + 2 \Big( -\frac{v^2}{2d} \Big)d' \ }

Here d' is the stopping distance that we want to look for.

\boxed{ \ 2 \Big( \frac{v^2}{2d} \Big)d' = (7.0v)^2 \ }

We crossed out 2 in above and below.

\boxed{ \ \Big( \frac{v^2}{d} \Big)d' = 49.0v^2 \ }

We multiply both sides by d.

\boxed{ \ v^2 d' = 49.0v^2 d \ }

We crossed out v^2 on both sides.

\boxed{\boxed{ \ d' = 49.0d \ }}

Hence, by using two significant figures, the stopping distance if the car is initially traveling at speed 7.0v is 49d.

<h3>Learn more</h3>
  1. Determine the acceleration of the stuffed bear brainly.com/question/6268248
  2. Particle's speed and direction of motion brainly.com/question/2814900
  3. About the projectile motion brainly.com/question/2746519

Keywords: a car traveling at speed v, takes distance d to stop after the brakes are applied, the stopping distance, if the car is initially traveling at speed 7.0v, the acceleration due to the braking is the same, two significant figures.

6 0
2 years ago
Read 2 more answers
A 5.00-g bullet is shot through a 1.00-kg wood block suspended on a string 2.00 m long. The center of mass of the block rises a
o-na [289]

Answer:395.6 m/s

Explanation:

Given

mass of bullet m=5 gm

mass of wood block M=1 kg

Length of string L=2 m

Center of mass rises to an height of 0.38 cm

initial velocity of bullet u=450 m/s

let v_1 and v_2 be the velocity of bullet and block after collision

Conserving momentum

mu=mv_1+Mv_2 -------------1

Now after the collision block rises to an height of 0.38 cm

Conserving Energy for block

kinetic energy of block at bottom=Gain in Potential Energy

\frac{Mv_2^2}{2}=Mgh_{cm}

v_2=\sqrt{2gh_{cm}}

v_2=\sqrt{2\times 9.8\times 0.38}

v_2=0.272 m/s

substitute the value of v_2 in equation 1

5\times 450=5\times v_1+1000\times 0.272

v_1=395.6 m/s

4 0
2 years ago
Other questions:
  • A tall cylinder contains 30 cm of water. oil is carefully poured into the cylinder, where it floats on top of the water, until t
    8·2 answers
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    10·1 answer
  • A solid, uniform disk of mass M and radius a may be rotated about an axis parallel to the disk axis, at variable distances from
    7·1 answer
  • A 0.60-kilogram softball initially at rest is hit with a bat. The ball is in contact with the bat for 0.20 second and leaves the
    15·1 answer
  • What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.
    5·1 answer
  • What is the concentration of molecular oxygen (O2) in mol/L on a June day in Toronto when atmospheric pressure is 1.0 atm and th
    15·1 answer
  • Picture a long, straight corridor running east-west, with a water fountain located somewhere along it. Starting from the west en
    12·1 answer
  • ASAP PLEASE HELPPP
    8·1 answer
  • In the year 2090, and Burt is still alive! Well, he’s really just a brain connected to a “life machine.” Since Burt has no body,
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!