Answer:
(A) = 3.57 m
Explanation:
from the question we are given the following:
diameter (d) = 3.2 m
mass (m) == 42 kg
angular speed (ω) = 4.27 rad/s
from the conservation of energy
mgh = 0.5 mv^{2} + 0.5Iω^{2} ...equation 1
where
Inertia (I) = 0.5mr^{2}
ω = \frac{v}{r}
equation 1 now becomes
mgh = 0.5 mv^{2} + 0.5(0.5mr^{2})(\frac{v}{r})^{2}
gh = 0.5 v^{2} + 0.5(0.5)(v)^{2}
4gh = 2v^{2} + v^{2}
h = 3v^{2} ÷ 4 g .... equation 2
from ω = \frac{v}{r}
v = ωr = 4.27 x (3.2 ÷ 2)
v = 6.8 m/s
now substituting the value of v into equation 2
h = 3v^{2} ÷ 4 g
h = 3 x (6.8)^{2} ÷ (4 x 9.8)
h = 3.57 m
Decomposing the vector b on the x-axis and the y-axis, we get a rectangle triangle where the two sides are bx (x-axis) and by (y-axis), and b is the hypothenuse.
The component in x, bx, is equal to the product between the hypothenuse and the cosine of the angle between b and the x-axis, which is

:
Answer:

Explanation:
When a pair of medial has greater difference between the their individual refractive indices with respect to vacuum then it has a greater deviation between the refracted ray and the incident ray.
According to the Snell's law:

a)

b)


c)

d)

e)

f)


Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
Use Scoratic it works with any time of subject