Answer: 9.312 m/s
Explanation:
The friction force (opposite to the motion) is Fa = μ*m*g*cos(α) with μ = kinetic friction. The force that makes the motion is
F = m*g*sin(α).
The Newton's law gives:
F - Fa = m*a
m*g*sin(α) - μ*m*g*cos(α) = m*a
g*sin(α) - μ*g*cos(α) = a so a = 4.335 m/s²
It's a uniformly accelerated motion:
Space
S = 0.5*a*t²
10 = 0.5*a*t²
=> t = 2.148 s
Velocity
V = a*t = 9.312 m/s.
Answer: 70.5 km/h
Justification:
The question is not clearly stated but it seems you are asking for the x - component of the velocity of the helicopter.
You can find the x and y - components of the velocity using the trigonometric ratios sine and cosine.
The sine ratio relates the y-component and the velocity by:
sin(angle) = y-component of velocity / velocity
The cosine ratio related the x-component and the velocity by:
cos(angle) = x-component of velocity / velocity.
Since you have the angle and the velocity and are asked by the x-component of the velocity, you need to use the cosine ratio:
cos(35°)= x-component / 86.0 km/h
=> x -component = 86.0 km/h * cos(35°) = 70.5 km/h
Answer:
Magnets can create electricity and electricity can create a magnetic force.
Both electric charges and magnets do not have to touch an object in order to exert a force on it.
Electromagnets use electricity to create a magnetic force.
Explanation:
Explanation:
A) The distance between the two successive compressions (or rarefactions) is actually called the wavelength of the longitudinal waves.
B) Wavelengths of longitudinal and transverse waves are comparable in the fact that in a transverse wave, the particles move perpendicular to the direction the wave travels whereas in a longitudinal wave the particles are displaced along the direction to the direction the wave travels